
Politecnico di Politecnico di MilanoMilano –– University of MassachusettsUniversity of Massachusetts

Detecting Faults Detecting Faults
in Integer and Finite Field in Integer and Finite Field

Arithmetic Operations Arithmetic Operations
for Cryptographyfor Cryptography

L. Breveglieri, I. Koren

and P. Maistri

IntroductionIntroduction

Motivation and objectives

Symmetric ciphers
Operations

Error Detection
Error Detecting Codes

Granularity of the code

Frequency of checkpoints

Results

Conclusions and future research

Motivation (1/2)Motivation (1/2)
Data CorruptionData Corruption

Ciphers are developed to be resistant against linear
and differential cryptanalysis

Similar plain texts must lead to completely different
ciphered outputs

Very few rounds are required to spread the difference
over the whole block

A single bit flip can alter half the block (i.e., the block
is randomly correlated to the correct output)

Differences are fewer if error occurs at the end of the
process (less rounds are computed afterwards)

Motivation (2/2) Motivation (2/2)
Fault AttacksFault Attacks

Fault attacks are a very efficient technique to break a
cipher

Inject an error and collect information from the corrupted
output

Most attacks directed against AES, RSA
But also against DES and Elliptic Curves

Actual application is the critical point
It requires physical access to the device and can be
destructive; more difficult than power analysis

EDCs can help detecting a fault attack!

ObjectivesObjectives

Identify the common components of block ciphers and
model the behavior in response to errors

Associate EDCs to data block and develop a code
prediction rule for (possibly) each operation

Evaluate the suitability of a code to the whole cipher
(i.e., overhead and error coverage)

Explore the way from Error Detection to Fault
Tolerance

Symmetric CiphersSymmetric Ciphers

Designed to be fast and efficient

Process block of data (8,16 bytes)

Different solutions exist
Each has its own properties (number of iterations,
operations, ...): no major common characteristics

Iterative structure simplifies design (even for detecting
codes)

Design based on confusion and diffusion principles

We considered AES finalists together with Camellia,
DES, IDEA and RC5

OperationsOperations

XOR: Every cipher

AND, OR: Camellia only

+: often used
-: in encryption, only MARS

×: slow and area-consuming
IDEA uses uncommon
modulus

Rotations: even data-dependent

Shift: Serpent only

Permutation: provides confusion

Polynomial ×: Rijndael and
TwoFish, over GF(28)

S-Box: non-linear

Ciphers XOR AND,OR +, - × Sbox Rot Shift Perm × mod G(x)
Camellia

DES
IDEA

MARS
RC5
RC6

Rijndael
Serpent
Twofish

Operations (1/3)Operations (1/3)

eXclusive OR: the only operation used by all the
ciphers (e.g., key mixing)

Bit-wise AND and OR: logical operations, used only
by Camellia

Shifts and rotations: even data-dependent, they pose
a challenge to hardware designers

Shift used only by Serpent: original input has to be
forwarded anyway since shift is not invertible

Permutations: easiest way to achieve confusion (input
regularities are dispersed)

Operations (2/3)Operations (2/3)

Modular arithmetic operations
Addition is often used

Subtraction is obviously used in decryption
Subtraction in encryption datapath is used only in MARS

Multiplication is used only in RC6, MARS and IDEA
It is a “complex” operation, relatively slow and area-
consuming
Idea uses modulus (216+1), others use (232)

Polynomial multiplication over binary extension fields
used in Rijndael and Twofish

Operations (3/3)Operations (3/3)

Substitution Box:
It is a replacement of bytes or words
It is often the main non-linear component; only IDEA and
RC5/RC6 do not use it explicitly
It is usually implemented by means of a lookup table

it is usually byte-to-byte, in order to limit size
Sometimes it can be computed on-the-fly (AES), but more
often its specification is a table itself
IDEA multiplication can be seen as a (very large) S-Box

(H. Raddum at Fast Software Encryption 2003)

Error Detection (1/2)Error Detection (1/2)

First approach: duplication
Use two independent path and compare results
100% hardware overhead, no additional latency

Second approach: repeated computation
After the first computation, repeat the process and compare
the results
It gives protection against temporary faults, not against
permanent ones
No significant hardware overhead, but twice the latency

These are generic solutions

Error Detection (2/2)Error Detection (2/2)

Solutions specific to cryptographic device:
US patent 5432848: DES tables are extended to include
error codes

Exploit unused hardware (Karri et al.)
Use decryption datapath to validate encrypted output
It can be done at encryption level, round level or operation
level
No significant hardware overhead, if the device already
supports decryption
Latency is minimized checking at the operation level

Exploit idle units (Karri et al.)
Use encryption functional units in idle state (RC6)
Decryption datapath is not required
Protection only against temporary faults

Error Detecting CodesError Detecting Codes

High coverage with low-order errors
They often provide 100% coverage of single bit errors

With high-order error, coverage depends on
redundancy

Output code and data match randomly

Hardware overhead smaller than duplication
They need a code generator, a comparator and propagation
units implementing the prediction rules

They work better when simple prediction rules are
available for the whole encryption process

The code is generated at the beginning and it is validated at
the end of the process
Checkpoint frequency can be increased for higher coverage

Parity CodesParity Codes

It can be computed at the byte or at the word level
It can be tuned from a single bit per word up to the desired
redundancy level

Parity of n-bit word is computed using n-1 XOR ports
Simple computation

It intrinsically fails on even-order faults (i.e., an even
number of errors)

It can detect all odd-order faults, when frequent checkpoints
are scheduled

Residue CodesResidue Codes

It is computed taking the modulo (2s-1)
s is the number of check bits
It can be computed through a weighted sum of the word bits

Unlike parity, it does not allow using a single check bit
Minimum redundancy is 2 bits (residue base 3)
It is usually computed at the word level, to minimize
overhead

Coverage is similar for even-order and odd-order
faults

MatchingMatching EDCsEDCs to to
Operations (1/3)Operations (1/3)

Parity is more suited to logical operations; the
prediction rules are...

eXclusive OR: ...the XOR of the input parities
Rotation: ...parity is unchanged, if the code is at the same
level of the operation
Shifting: ...must consider bits leaving and entering the word
Polynomial multiplication: …if defined over GF(2n), it is
easily predictable when one of the operands is known a
priori
Data-dependent operations (RC5, RC6) are obviously more
complex

Addition and multiplication must consider all the
carries that are required to compute the result

MatchingMatching EDCsEDCs to to
Operations (2/3)Operations (2/3)

Residues are more suited to arithmetic operations;
the prediction rules are...

Addition: ...the sum of the input residues
but overflow needs correction!

Multiplication: ...the product of the input residues
but most significant (and neglected) bits need a corrective
term

Shifting: ...it can be seen as a multiplication by a power of 2
eXclusive OR: …the sum of the input residues, but a
correction term is needed

Prediction of the code after polynomial multiplication
over GF(2n) is expensive

MatchingMatching EDCsEDCs to to
Operations (3/3)Operations (3/3)

Some operations are not suited to parity codes:
Logical AND and OR: prediction is much more expensive
than duplication
Validate the code, protect by duplication and generate the
code from scratch

Some operations are suited both to residue and
parity:

Substitution boxes: the output code is stored together with
the result; the input code is used for implicit validation
Address protection by concatenating check bits introduces
a large overhead (1 additional bit doubles the table size)

Use custom address decoding unit to reduce the area
overhead

Cost of Prediction RulesCost of Prediction Rules

ExpensiveYesPolynomial Mult.

YesYesPermutation

YesYesShift

YesYesRotation

ExpensiveYesSubstitution Box

YesExpensiveInteger Mult.

YesYesInteger +, -

More expensive than duplicationAND, OR

YesYesXOR

Residue CostParity CostOperation

EDC GranularityEDC Granularity

Symmetric ciphers operate on different word size (8,
16, 32 bits)

Code granularity should not be larger than operand
size

The code should be validated and regenerated with each
operation! (e.g., substitution tables)

Finer code adds further complexity and overhead
Detection rate improves
Prediction rule may become more complex

Choosing the Proper EDCChoosing the Proper EDC

Parity, per byteTwofish

Parity, per byteSerpent

Parity, per byteRijndael (AES)

ResidueRC6

Parity or residueRC5

Residue, but expensiveMARS

Residue, but expensiveIDEA

ParityDES

Intractable by EDCCamellia

Suggested CodeCipher

Choosing the Proper EDC Choosing the Proper EDC
(1/3)(1/3)

If operations do not allow affordable code prediction,
prefer duplication of functional unit

(Camellia and logical operations AND and OR)

If cipher uses multiplication, then use residue (RC6)

If cipher uses polynomial multiplication, then use
parity (AES, Twofish)

Choosing the Proper EDC Choosing the Proper EDC
(2/3)(2/3)

Some ciphers use operations suitable for different
codes:

MARS uses substitution boxes (parity) and integer
multiplication (residue)
RC5 uses addition, rotations, XORs

Using residue codes is the only (expensive) choice
MARS: use residue, but validate before S-Box
RC5: both parity code and residue are affordable; the
choice can be done according to the desired
coverage/overhead ratio

Choosing the Proper EDC Choosing the Proper EDC
(3/3)(3/3)

IDEA uses multiplication
Use residue codes
The modulus is uncommon

The computation of the correction term (due to discarded bits)
is complex and expensive

Use residues, but insert checkpoints before products

DES is based on lookup tables
Expansion and S-Box work on small nibbles

Residue has excessive overhead
Round permutation does not alter word-level parity

Simple, but poor coverage
Use parity (per byte), but frequent checkpoints are required

Frequency of Checking (1/2)Frequency of Checking (1/2)

There are three main levels:
After whole encryption, at the end of some rounds, after
inner operations

With higher checkpoint frequency, the detection
latency is lower

But critical path is longer, hence lower clock rate can be
achieved

Frequency affects also detection coverage
Error masking can be avoided by frequent checkpoints
Frequent checkpoints may increase the false positives

Checkpoint must be scheduled before any error is
completely masked by encryption process

Frequency of Checking (2/2)Frequency of Checking (2/2)

Single-fault model:
Any difference between the predicted and the actual code
allows detecting the error
After fault injection, each round makes the error evolve by
spreading and cancelling the differences
If the error is completely cancelled, the fault will not be
detected

If a premature cancellation may occur, a checkpoint MUST be
scheduled

AES and RC5 models allow the single fault to reach the end
of encryption

Single fault is always detected
IDEA simulations have shown that error cancellation can
occur even for single faults

Coverage Coverage –– Parity CodeParity Code

Coverage Coverage –– Residue CodeResidue Code

ConclusionsConclusions

Error detecting codes are a reasonable alternative to
duplication:

Reduced hardware overhead
Parity and residue codes cover a wide range of
cryptographic operations
Many degrees of freedom allow to choose the desired
coverage/cost tradeoff

Type of code
Granularity
Frequency of checkpoints

Optimum detection rate
Often 100% of single errors are detected
Detection rate depends on the number of check bits, when
multiple errors are injected

Future ResearchFuture Research

Develop a library of cryptographic functional units with
support to error detection

Evaluate accurate hardware and latency overhead,
depending on code and checkpoint frequency

Develop fault tolerant atchitectures
AES model allows for fault location at the byte level

Exploit error detection as a countermeasure against
fault attacks

Recompute the result and output only correct data
Stop the device/erase key memory when an attack is
detected

