

Basics of Fault Attacks

Christophe Giraud

Oberthur Card Systems

Hugues Thiebeauld

Thales Microelectronics

Overview

- How to perform a fault attack?
- The different kinds of faults
- Fault attacks on symmetric and asymmetric cryptosystems
- About security
- Conclusion

Smart Cards & Fault Induction

Before 1996 :

Smart cards security ≈ Mathematical security of cryptographic algorithms

- Side Channel Attacks :
 - 1996 : Timing Attacks
 - 1998 : Power consumption Analysis
 - 2001 : Electromagnetic Analysis
- Fault Attacks :
 - 1996 : Fault Induction Attack on the RSA CRT

- By using a glitch (power, clock)
 - Non-invasive

Card Systems

- Disturbs the whole component
- Relatively easy to counteract
- By using a light flash
 - Semi-invasive
 - Equipment: a camera flash or a laser
 - A means of disturbing a precise part of the component

• Other ways...

Light attacks – Principle

Important parameter : the synchronisation

The different kinds of faults

Permanent faults:

- Modify definitively the value of a memory cell (DATA or EEPROM)
- Very powerful if the data is related to sensitive objects (PIN, keys,...)

Transient faults:

- The most common
- Disturbance of a code execution or of a computation
- CPU and registers
- Reading code / data

Fault attacks on asymmetric cryptosystems

- **RSA** (Boneh, DeMillo & Lipton)
 - Secret key : (d, p, q)
 - Public key : (e, N=p.q)
- RSA-CRT:
 - $dp = d \mod p-1$ and $dq = d \mod q-1$
 - $S_p = m^{dp} \mod p$ and $S_q = m^{dq} \mod q$
 - S = ((((S_q S_p) mod q) × (p⁻¹ mod q)) × p + S_p) mod N
- Disturbance during the computation of S_p (or S_q) $\rightarrow \hat{S}$

$$q (or p) = GCD(S - \hat{S}, N)$$

= GCD(m - \hat{S}^{e} , N) (Lenstra)

Fault attacks on symmetric cryptosystems

• **DES** (*Biham and Shamir – Crypto'97*)

Fault attacks on symmetric cryptosystems

- **DES** (Biham and Shamir Crypto'97)
 - IP(C) $_{32-63} = R_{15}$
 - $IP(C)_{32-63} \oplus IP(FC)_{32-63} = e$
 - $\operatorname{IP}(C)_{0-31} \oplus \operatorname{IP}(FC)_{0-31} = e'$
 - $\operatorname{IP}(C)_{0-31} \oplus \operatorname{IP}(FC)_{0-31} = \operatorname{PoS}(\operatorname{E}(R_{15}) \oplus K_{16}) \oplus \operatorname{PoS}(\operatorname{E}(R_{15} \oplus e)) \oplus K_{16})$

→Eliminate the K₁₆'s which do not satisfy: $e' = \text{PoS}(E(R_{15}) \oplus K_{16}) \oplus \text{PoS}(E(R_{15} \oplus e)) \oplus K_{16})$

- The secret key can be recovered by using 2 faulty ciphertexts.

Fault attacks on symmetric cryptosystems

- **AES** (*Piret and Quisquater CHES 2003*)
 - Modification of 1 byte of the *MixColumns*' input has an impact on 4 bytes.
 - Modification of 1 byte between the *MixColumns* of the 7th round and the *MixColumns* of the 8th round.
 - The secret key can be recovered by using 2 faulty ciphertexts.

About Security

- Hardware countermeasures:
 - Sensors
 - Filters
 - Dual rails
 - Desynchronisation
- Software countermeasures:
 - Must be installed on each layer of an application
 - Very costly in terms of both memory space and timings
 - \rightarrow Choosing appropriate countermeasures:
 - Determine the attacker's possibilities,
 - Select the objects and the functions to protect.

Conclusion

- Easy to set up...
 - but requires technical experience to successfully put such attacks into practice.
- The threat exists so the risk has to be seriously considered.
- Efficient countermeasures are well-known...

but must be implemented both carefully and sparingly !