
 
 
 
 

Fault Detection Mechanisms  
for Smatcards  

Performing Modular Exponentiation 
 

 

Shay Gueron1,2 
 

1 Discretix Technologies, Netanya, Israel  
2 Department of Mathematics, University of Haifa, 

Haifa, 31905, Israel  
shay@math.haifa.ac.il 

 

mailto:shay@math.haifa.ac.il


 

• Task: Foiling fault attacks on smartcards 
implementing modular exponentiation.  

 
• Problem: Detecting error only at the end of the 

computations, may leak information.  
 
(AD) E mod N = A 

 
• Problem: Detecting error only at the end of the 

computations � affects performance. 
 

• Proposal:  
• Check each step of the exponentiation 

(multiplication/squaring) independently.  
 

• Immediate abortion of the procedure, as soon 
as any fault is detected, without completing the 
computation of the erroneous result.  

 
• Test can be performed on-the-fly, to avoid any 

performance penalty.  
 

• Proposed approach can be easily generalized. 



 
• Childhood methods: easiest way to 

understand the method 
 

• Did we make a mistake? 
 
 1234 
 4578 
 8769 
 4878  
19357 

• Did we make a mistake here? 
 
457 
 36 

   2742 
 1361 
16352 
 

• Observing that an error occurred is simple 
Does not tell you where the mistake 
occurred (no need to correct or find where). 

 



•  Easy way:  
Arithmetic Stamp in “Smartcad Basis” 

 
Definition: the arithmetic stamp of a positive integer X, denoted 
X' or Stamp (X), is  

 
X' = Stamp (X) = (X-1) mod F + 1 

 
where F is some chosen modulus.  

 
Use F = 232 � 1 
 
A natural choice for a system that uses a 32 bits bus.  
 

Computing X' = Stamp (X): X = [XL-1, .., X1, X0] positive 
integer consisting of L words Xi  
 

 
Algorithm  

 Computing the Arithmetic 
Stamp 

Input: X = [XL-1, .., X1, X0]     
Output: X' = Stamp (X) = (X-1) 
mod F + 1 
Computations: 
1. S=X0 
2. for i from 1 to L-1 do 
     S = S+Xi 
End 
3. S = lsb(S)+ msb(S) 
4. S = lsb(S)+ msb(S) 
Output S 



 
 
 
 
 
 
 
 

Example 1:  X = 79228159673465750010344767471.  
In binary representation, X has with L=3 words (of length t=32 
bits).  
X=[ X2X1X0]= 
      11111111111111111111111101100101 
       11111111111111111111111111001001 
       11111111111111111111111111101111 
Computing X'=Stamp (X) within L+2 = 4 clock cycles is carried 
out as follows:  
       S= X0=11111111111111111111111101100101 
       S = X1+X0 =  
       111111111111111111111111110111000 
       (S has 33 bits) 
       S = X2+S= 
       1011111111111111111111111100011101 
       (S has 34 bits) 
       S = lsb(S) + msb(S)= 
       11111111111111111111111100011111 
       (S has 32 bits) 
       S = lsb(S) + msb(S) =  
       11111111111111111111111100011111                    
       (S has 32 bits) 
       Output S = Stamp (X) = X'. 
 
S = 4294967071in decimal representation, and it can be easily 
checked that indeed S = X-1 mod F + 1 (=X') 



Using the Arithmetic Stamp to Check 
Load/Unload Integrity:   
 
Add one "check–word" to the data structure  



The Modular Exponentiation Algorithm  
 
 

NRMM(A, B, N, r): Nonreduced Montgomery 
Multiplication of order r  

Input: 
A, B (r bits long integers) 
N (n bits long odd integer) 
r ≥ n 
Output: NRMM (A, B, N, r) =  (AB + YN) / 2r  
and Y = -ABN-1 mod 2r 
Computations:  
S=0 
For i from 0 to r-1 do  
     S = S + Ai B 
     Yi = S0 
     S = S + Yi N 
     S = S/2 
End for 
Return S, Y 

Modular exponentiation with NRMM  
Input: 
X (x bits long integer) 
A (n bits long integer, A < N) 
N (n bits long odd integer) 
s = n+2 
Pre-computed value H = 22n mod N 
Output: 
AX mod N  
Computations:  
1. B = NRMM (A, H, N, s) 
2. T = B 
3. For i from x-2 to 0 do  
     T = NRMM (T, T, N, s) 
     if Xi=1 then T = NRMM (T, B, N, s) 
end for  
4. T = NRMM (T, 1, N, s) 
Return T 

 



 

The Fault Detection Strategy: Test all 
intermediate results  
Use the Arithmetic Stamp For Checking NRMM  



 
 

External Checking of the NRMM Result, with No 
Additional Dedicated Hardware  

 
T = NRMM (A, B, N, s) = (AB + Y N)/2s  
 
Y = -ABN-1 mod 2s.  
 
To verify the result (T), check that its arithmetic stamp (T') 

equals to the arithmetic stamp of ((A B + Y N)/2s).  
 
Use the following property (see Appendix): 

 
((A B + Y N)/2s)' = ((A' B' + Y' N')' (2-s)')'           (*) 

 
F is constant in our system, Z = (2-s)' = 2-s mod F is also fixed.  
 
Pre-compute and store Z (requiring one word of storage).  
 
N fixed (if RSA key is not changed): pre-compute and store N'.  
 
Before exponentiation, also pre-compute B'  

 

Verifying NRMM operation 
Pre-Computations: Z, , B', N' 
Input: T = NRMM (T, B, N, s), Y.  
1. Compute Y', and T'.  
2. Compute Q =  ( (T'B' + Y'N') Z)' 
3. Compare Q to T'.  
If the comparison fails- abort.  

 



 
Example 2:  
 
 
(data is written in hexadecimal base) 
 
N = 8000082D80216E1B, A = 80002407,  
B = 8000082D8020EE1B  
 
We have n = 64 (the bit length of N), s= n+2 = 66.  
Suppose that the CCP computed  
T = NRMM (A, B, N, s) = 1D8921075EC05D7A, and  
Y = EC48F921E8425BF9.  
 
The result (T) needs to be verified.  
 
Pre-Computation:  

N' = 217649, Z = 40000000  
A' = 80002407, B' = 20F649 

Verification procedure  
    (step 2 is broken to several sub-steps) 
1. T' = 7C497E81, Y' = D48B551B. 
2.a. Q1 = (A' B')' = 23997B28,  
2.b. Q2 = (Y' N')' = CD8C7EDD,  
2.c. Q3 =  ( Q1 + Q2 )' =   F125FA05, 
2.d. Q4 = (Q3 Z)' = 7C497E81. 
3.Compare Q4 to T'. 
(Here, Q4=T'= 7C497E81, and the result is verified)                                

 



 

Internal On-the-fly checking of the NRMM 
Result, with Additional Dedicated Hardware  
 
Repeat all operations (using a small register) 
 

 
 

 
NRMM (A, B, N, s) 

Computation  

 
On-the-fly NRMM 

verification 
 
 
S=0 
for i from 0 to s-1 do  
     S = S+Ai B 
     Yi= S0 
     S = S+ Yi N 
     S = S/2  
end  
Output S 

 

Pre-computation: B', N' 
 
T' = 0  
for i from 0 to s-1 do  
     T' = T'+Ai B'  

              
     T' = T'+YiN'  

T' = (T' + T0 F)/2 
end  
Output T' 
Verification: S'=T' 

 
 

On-the-fly computetion:  
Check is ready (aolmost) together with the result.  

 



• Summay: 
 
 

• Easy method.  
• High success probability. 
• Several ways to implement (SW and HW). 
• Can be generalized to other arithmetic 

operations. 
 


	Fault Detection Mechanisms
	for Smatcards
	Performing Modular Exponentiation
	Using the Arithmetic Stamp to Check Load/Unload Integrity:
	Add one "check–word" to the data structure
	The Modular Exponentiation Algorithm
	
	Modular exponentiation with NRMM


	The Fault Detection Strategy: Test all intermediate results

	Use the Arithmetic Stamp For Checking NRMM
	External Checking of the NRMM Result, with No Additional Dedicated Hardware
	Internal On-the-fly checking of the NRMM Result, with Additional Dedicated Hardware
	Repeat all operations (using a small register)


