Fault Detection Mechanisms for Smatcards Performing Modular Exponentiation

Shay Gueron^{1,2}

¹ Discretix Technologies, Netanya, Israel ² Department of Mathematics, University of Haifa, Haifa, 31905, Israel <u>shay@math.haifa.ac.il</u>

- **Task**: Foiling fault attacks on smartcards implementing modular exponentiation.
- **Problem**: Detecting error only at the end of the computations, may leak information.

 $(A^D)^E \mod N = A$

- **Problem**: Detecting error only at the end of the computations affects performance.
- Proposal:
- Check each step of the exponentiation (multiplication/squaring) independently.
- Immediate abortion of the procedure, as soon as any fault is detected, without completing the computation of the erroneous result.
- Test can be performed on-the-fly, to avoid any performance penalty.
- Proposed approach can be easily generalized.

• Childhood methods: easiest way to understand the method

- Did we make a mistake?
- 1234 4578

8769

4878

19357

• Did we make a mistake here?

457	
36	
2742	
1361	
16352	

• Observing that an error occurred is simple Does not tell you where the mistake occurred (*no need to correct or find where*).

• Easy way: Arithmetic Stamp in "Smartcad Basis"

Definition: the arithmetic stamp of a positive integer X, denoted X' or Stamp (X), is

 $X' = Stamp(X) = (X-1) \mod F + 1$

where F is some chosen modulus.

Use $F = 2^{32} - 1$

A natural choice for a system that uses a 32 bits bus.

Computing X' = Stamp (X): $X = [X_{L-1}, ..., X_1, X_0]$ positive integer consisting of L words X_i

Algorithm		
Computing the Arithmetic		
Stamp		
Input: $X = [X_{L-1},, X_1, X_0]$		
Output: $X' = $ Stamp $(X) = (X-1)$		
mod F + 1		
Computations:		
1. $S = X_0$		
2. for i from 1 to L-1 do		
$S = S + X_i$		
End		
3. $S = lsb(S) + msb(S)$		
4. $S = lsb(S) + msb(S)$		
Output S		

```
Example 1: X = 79228159673465750010344767471.
```

In binary representation, X has with L=3 words (of length t=32 bits).

 $X = [X_2 X_1 X_0] =$ 1111111111111111111111111111101100101 11111111111111111111111111111001001Computing X'=Stamp (X) within L+2 = 4 clock cycles is carried out as follows: $S = X_1 + X_0 =$ 111111111111111111111111111111110111000 (S has 33 bits) $S = X_2 + S =$ 101111111111111111111111111100011101 (S has 34 bits) S = lsb(S) + msb(S) =111111111111111111111111111000111111 (S has 32 bits) S = lsb(S) + msb(S) =

11111111111111111111111111000111111

(S has 32 bits)

Output S = Stamp(X) = X'.

S = 4294967071 in decimal representation, and it can be easily checked that indeed $S = X-1 \mod F + 1 (=X')$

Using the Arithmetic Stamp to Check Load/Unload Integrity:

Add one "check-word" to the data structure

The Modular Exponentiation Algorithm

NRMM(A, B, N, r): Nonreduced Montgomery Multiplication of order r				
Input:				
A, B (r bits long integers)				
N (n bits long odd integer)				
$r \ge n$				
Output: NRMM (A, B, N, r) = $(AB + YN) / 2^{r}$				
and $Y = -ABN^{-1} \mod 2^r$				
Computations:				
S=0				
For i from 0 to r-1 do				
$S = S + A_i B$				
$Y_i = S_0$				
$S = S + Y_i N$				
S = S/2				
End for				
Return S, Y				
Modular exponentiation with NRMM				
Input:				
X (x bits long integer)				
A (n bits long integer, $A < N$)				
N (n bits long odd integer)				
s = n+2				
Pre-computed value $H = 2^{2n} \mod N$				
Output:				
$A^{X} \mod N$				
Computations:				
1. B = NRMM (A, H, N, s)				
2. $T = B$				
3. For i from x-2 to 0 do				
T = NRMM (T, T, N, s)				
if $X_i=1$ then $T = NRMM$ (T, B, N, s)				
end for				
4. $T = NRMM(T, 1, N, s)$				
Return T				

The Fault Detection Strategy: Test all intermediate results Use the Arithmetic Stamp For Checking NRMM

External Checking of the NRMM Result, with No Additional Dedicated Hardware

 $T = NRMM (A, B, N, s) = (AB + Y N)/2^{s}$

 $Y = -ABN^{-1} \mod 2^{s}.$

To verify the result (T), check that its arithmetic stamp (T') equals to the arithmetic stamp of $((A B + Y N)/2^{s})$.

Use the following property (see Appendix):

 $((A B + Y N)/2^{s})' = ((A' B' + Y' N')' (2^{-s})')'$ (*)

F is constant in our system, $Z = (2^{-s})' = 2^{-s} \mod F$ is also fixed.

Pre-compute and store Z (requiring one word of storage).

N fixed (if RSA key is not changed): pre-compute and store N'.

Before exponentiation, also pre-compute B'

Verifying NRMM operation		
Pre-Computations: Z, , B', N'		
Input: $T = NRMM (T, B, N, s), Y$.		
1. Compute Y', and T'.		
2. Compute $Q = ((T'B' + Y'N')Z)'$		
3. Compare Q to T'.		
If the comparison fails- abort.		

Example 2:

(data is written in hexadecimal base)

N = 8000082D80216E1B, A = 80002407, B = 8000082D8020EE1B

We have n = 64 (the bit length of N), s = n+2 = 66. Suppose that the CCP computed T = NRMM (A, B, N, s) = 1D8921075EC05D7A, and Y = EC48F921E8425BF9.

The result (T) needs to be verified.

Pre-Computation: N' = 217649, Z = 4000000 A' = 80002407, B' = 20F649 Verification procedure (step 2 is broken to several sub-steps) 1. T' = 7C497E81, Y' = D48B551B. 2.a. Q1 = (A' B')' = 23997B28, 2.b. Q2 = (Y' N')' = CD8C7EDD, 2.c. Q3 = (Q1 + Q2)' = F125FA05, 2.d. Q4 = (Q3 Z)' = 7C497E81. 3.Compare Q4 to T'. (Here, Q4=T'= 7C497E81, and the result is verified)

Internal On-the-fly checking of the NRMM Result, with Additional Dedicated Hardware

Repeat all operations (using a small register)

NRMM (A, B, N, s)	On-the-fly NRMM
Computation	verification
	Pre-computation: B', N'
S=0	T' = 0
for i from 0 to s-1 do	for i from 0 to s-1 do
$S = S + A_i B$	$T' = T' + A_i B'$
$Y_i = S_0$	
$S = S + Y_i N$	$T' = T' + Y_i N'$
S = S/2	$T' = (T' + T_0 F)/2$
end	end
Output S	Output T'
	Verification: S'=T'

On-the-fly computation:

Check is ready (aolmost) together with the result.

• Summay:

- Easy method.
- High success probability.
- Several ways to implement (SW and HW).
- Can be generalized to other arithmetic operations.