
Scan based Attack on Hardware
Implementations of Data
Encryption Standard

Bo Yang, Kaijie Wu and Ramesh Karri
ECE Department

Polytechnic University, Brooklyn, NY USA

Presented by Nikhil Joshi, Polytechnic U, NY

Cryptographic hardware

More and more cryptographic algorithms
have been implemented in Application
Specific Integrated Circuit (ASIC) to provide
high throughput.
Any ASIC has to be tested after fabrication to
validate its function.

Scan based test

MUX
D Q

Q

Combinational
Circuit

mode

scan_in

clk

MUX
D Q

Q
mode

scan_out

clk

data

data

How to mount a scan based attack?

Operation 1

...

Round Key

Input

Pre key function

Post key function

Key mixing
X

Y

W

Z

Operation 2

Operation i

...
Operation n-1

Operation n

Round Register Scan Chain

X = Pre key function
(W) where W is the
input to this round
Y = Key Mixing (X,
Round key)
Z = Post key
function (Y) where Z
is the round output
What can we do?
We can apply
different inputs
We can scan out
the value in round
register

How to mount a scan based attack?

Operation 1

...

Round Key

Input

Pre key function

Post key function

Key mixing
X

Y

W

Z

Operation 2

Operation i

...
Operation n-1

Operation n

Round Register Scan Chain

Can we calculate X
from W
It is easy, because
the algorithm is
public
Calculate Y from Z
It is not easy,
because the post
key function may be
not a bijective
function
Round key can be
determined by
solving Key mixing
function

Data Encryption Standard

The Data Encryption Standard (DES) is a
symmetric encryption algorithm developed in
the 1970s by IBM.
DES encrypts 64-bit data blocks under the
control of a 56-bit user key.
DES decryption is the inverse of DES
encryption and uses the same user key.
Sixteen 48-bit round keys are generated from
56-bit user key by key schedule algorithm.

Encryption Algorithm

Initial Permutation

64-bit Plaintext

Round Function

32-bit 32-bitRL

48-bit Round Key1

16 times, each time
uses a different

round key

Reverse Permutation

64-bit Cipher
Bit permutation

Bit permutation

Round Function
Li Ri

Function f

Round Key

+

Li+1 Ri+1

All buses are
32-bit

If Ri, Li and Ri+1 are known, what will happen?
If we can solve d=f(k,r), then k is retrieved.

Known

e

d

k

r

Function f
Ri

Expansion

Round Key +

32-bit

48-bit

Duplicate 16
bits among 32

bits

S-box1

6-bit

4-bit

48-bit

S-box2

6-bit

4-bit

S-box3

6-bit

4-bit

S-box4

6-bit

4-bit

S-box5

6-bit

4-bit

S-box6

6-bit

4-bit

S-box7

6-bit

4-bit

S-box8

6-bit

4-bit

32-bit

Permutation
32-bit

r

a

b

c

d

Easy

Easy

Not
easy

If solved,
k=b⊕a

k

Bit permutation

Iterative DES architecture

Initial Permutation

Input_Reg

+ f

Reverse Permutation

Output_Reg

MUXMUX

R_Reg
Key Reg

Control

Round key
ROM

4

L_Reg

en

en

sel

addr

All 16 rounds use the same hardware
If the L and R Register can be scanned out, then Li and Ri are
known. Then Ki will be retrieved

Two-step scan based attack

The positions of flip-flops of L and R register
should be determined in the scan chain. Then
we can get the value of L and R register in
the scanned out bit stream.
Using L0, R0, L1 and R1 to discover Round
Key1

Some Assumptions

The attack knows the algorithm (it is public)
The attacker has access to high level timing
diagrams provided by DES ASIC vendor
Round keys are stored in a secure RAM/ROM
The attacker has access to scan chains via
the JTAG port
Round key registers are not included in the
scan chain; otherwise it will be easy to scan
out the round key

Attack step 1: determine the scan chain
structure

…

Chip Flip-flops of input register

Plaintext2:000000…000000
Plaintext1:100000…000000

TDO Bit stream 2:01101…10001010
Bit stream 1:01101…10011010

Position of Input
Register 64

Similarly, all the flip flops in Input register, L register and R register
are determined.

clock

reset

Attack step 2: recover round key 1

As we discussed, if we can figure out the input of S-box from the
output of s-box, the round key can be recovered.
Why is it not easy to determine?
Each S-box compresses 6-bit input into 4-bit output, so it is not a
bijective function.

Round Key +
48-bit

S-box1

6-bit

4-bit

48-bit

S-box2

6-bit

4-bit

S-box3

6-bit

4-bit

S-box4

6-bit

4-bit

S-box5

6-bit

4-bit

S-box6

6-bit

4-bit

S-box7

6-bit

4-bit

S-box8

6-bit

4-bit

32-bit

a

b

c

Not
easy

k

Look into S-box structure: S1

13601014311571942812153

05103791215112613814142

83591112610113214471501

70951261038111521134140

1514131211109876543210Address

Compresses 26 to 24. Each row has 16 different numbers ranging
from 0 to 15
Input is b48-43, among which b48b43 is row address and b47b46 b45b44 is
column address
For example, if c32-29 is (0100)2, b48-43 can be either (000010)2 or
(000111)2 or (100000)2 or (101001)2.

If c32c31c30c29 is (0100)2, b48b47b46 b45b44b43 can be either (000010)2 or
(000111)2 or (100000)2 or (101001)2.
Suppose we apply b48b47b46 b45b44b43
the output will be 15 if b48b47b46 b45b44b43 is (000111)2
the output will be 14 if b48b47b46 b45b44b43 is (100000)2
the output will be 1 if b48b47b46 b45b44b43 is (000010)2 or (101001)2
We still can not determine the input according to the output

Apply the second input?

13601014311571942812153

05103791215112613814142

83591112610113214471501

70951261038111521134140

1514131211109876543210Address

We apply input b48b47b46 b45b44b43, then b48b47b46 b45b44b43 and finally
b48b47b46 b45b44b43
If the output sequence is 4→15 →1, b48b47b46 b45b44b43 is (000111)2
If the output sequence is 4→14 →15, b48b47b46 b45b44b43 is(100000)2
If the output sequence is 4→1 →15, b48b47b46 b45b44b43 is (000010)2
If the output sequence is 4→1 →13, b48b47b46 b45b44b43 is (101001)2
Input is determined

Apply three inputs

13601014311571942812153

05103791215112613814142

83591112610113214471501

70951261038111521134140

1514131211109876543210Address

How to apply plaintexts?

If we apply the three inputs:
b48b47b46 b45b44b43

b48b47b46 b45b44b43

b48b47b46 b45b44b43

According to the sequence of c1
32-29, c2

32-29 and
c3

32-29, we can determine b48b47b46 b45b44b43.
Then k48k47k46 k45k44k43 can be calculated.
Now the problem is: Can we apply three
plaintexts to generate required input sequence
of S1?

Round Key +
48-bit

48-bit

a

b

k

Trace back to plaintext

Since b=a⊕k and k is unchanged, a45 → b45
According to Expansion, r30 → a45
According to Initial Permutation, i24 → r30
Similarly, i40 → r43
So we can control plaintext to apply required inputs to S1

R0

Expansion

Round Key +

32-bit

48-bit

48-bit

r

a

b

k

Initial Permutation

64-bit Plaintext

RL r

i

Summary of attack step 2

We can random pick up a plaintext i1
Switch its 24th bit as i2
Switch its 40th bit as i3
Calculate c1

32-29, c2
32-29 and c3

32-29 from R1 and L1.
Determine b48b47b46 b45b44b43 from c1

32-29, c2
32-29 and

c3
32-29

Calculate a48a47a46 a45a44a43 from R0
Calculate k48k47k46 k45k44k43 from a48a47a46 a45a44a43
and b48b47b46 b45b44b43
Attend this method to other S-box, we can recover
Round Key 1

Totally using 3 plaintext in attack step 2

If we discover the Round Key 1 by attack S-
box one by one, we need 24 plaintexts.
By exhaustively simulating, we find we can
use only 3 plaintexts that work for all 8 S-
boxes simultaneously.
For example:

i1: (0000000000000000)16

i2: (0000550000005500)16

i3: (5500400110000401)16.

Discover user key

Similarly, we can discover Round Key 2 and
Round Key 3.
From these three round key, we can discover
the user key by key schedule algorithm.

Conclusions

We develop a two step attack to DES
hardware implementations that use scan test
First, we determine the positions of flip flops
in the round register in the scan chain.
By using the temporary round results, we can
discover the corresponding round key.

