Early Analysis of Fault-Attack Effects for Cryptographic Hardware

Régis Leveugle*

TIMA Laboratory – Grenoble – FRANCE

* Partly supported by the DURACELL Project

Context(s) of fault effect analysis

Early analysis: methods and tools

Differences between paradigms: impact on tools and fault models

Conclusions and perspectives

Evolution of

Fault Propagation Analysis Needs

Once upon a time ... in space ...

Energetic particles (photons or charged particles) can affect the microelectronic devices and subsystems in several ways.

- **Two main classes of effects:**
 - Total Ionization Dose (TID): long-term degradation of electronics due to the cumulative deposited charge.
 - Single Event Effects (SEEs): occur when a single charged particle strikes the material, ionizes it and provokes a current pulse.

\Box SEEs:

- Single Event Latchups (SELs) create shorts between ground and power, and cause permanent functional damages (hard errors).
- Single Event Upsets (SEUs) occur when a transient pulse provokes a bit flip in a device memory cell (soft errors).

- **Radiation effect problems in space applications can be solved by:**
 - using radiation hardened devices, by technology or design,
 - qualifying commercial circuits by radiation ground testing ... and/or early analyses.

Consequences of CMOS evolutions

CMOS shrinking

- Reduced Vdd and noise margin
- Reduced node capacitance

Increased frequency (increased probability of latching)

- Very deep sub-micron CMOS technologies are increasingly sensitive to the effects of alpha particles and atmospheric neutrons => SET / SEU / MBU.
- Studies focused on (but not limited to) SET/SEU-like faults
 Can be extended to other faults (stuck-at, coupling, ...), permanent or not
 Partially covers noise problems (signal integrity)

And also ...

New security threats: fault attacks

Cryptography primitives:
 DES / RSA / AES ...

Security locks (ratification counters, ...)

Various possibilities

- Power glitch
- ◆Flash light
- Laser
- **♦**...

Ultimately: logic fault(s)

There are "new" problem(s) with fault-based attacks ...

... Are answers to "old" problems of some help ???

And up to what extent ?

Basics of

Existing Dependability Analysis Environments

Current goals of analysis environments

- Working at various levels in the design flow (various design description levels),
- Automated,
- Compatible with classical up-to-date industrial design flows.

Link between analysis levels

Description level	Analysis	Qualitative info.	Quantitative info.
Behavioral/RTL	Behavioral simulation (emulation)	Error -> failure (application point of view)	P(failure error)
Gate level (+ back annotation)	Gate level simulation (timed)	Glitch -> Error (latched) + refinement previous analysis	P(error glitch)
Electrical/Physical	Electrical/Physical simulation	Particle or physical event -> glitch or bit-flip	P(glitch particle) P(bit-flip particle)

Estimation principle of application failure (limitations to be considered at high levels): Critical logic paths

P(failure): P(failure|error) * [P(bit-flip|particle) + P(error|glitch) * P(glitch|particle)] * P(particle)

Critical nodes

Sensitive nodes

Sensitive nodes

Summary of the "early evaluation" goals

- Develop injection methods and CAD environment to <u>early</u> analyze the <u>functional</u> impact of SEUs at the application level
 - **Early: performed on RTL descriptions (VHDL)**
 - Functional: technology independent (no detailed timing information targets bit-flips, not transients in combinatorial logic network)
 - \diamondsuit Based on commercial tools and standard design flows

Early identification of

- Functional failure modes (critical behaviors)
- Error propagation paths (critical nodes)

functional model, including qualitative and quantitative information

Early assessment of

- Dependability level
- Design hardening efficiency

Link with design hardening

Dependability analyses: alternative results

Alternative approaches

Alternatives for fault injection campaigns

Analysis flow: overview

Functional failure mode analysis of a digital integrated circuit

Controlled generation of mutants

- Controlled generation'' of mutants implies:
 - Generation from high-level (RT-level) descriptions (available early in the design process)
 - Significant faulty behaviors
 - (related to actual fault effects observable in the field => SEUs)
 - Optimization for synthesis (compatibility with simulation and emulation)
 - > Taking into account the limitations of hardware emulation systems

Criteria for quality evaluation:

- Number of additional I/Os (number of sub-campaigns)
- Number of gates after synthesis (emulation hardware complexity)
- Maximum frequency (time required for the injection campaign)

Levels of fault/error injection for SEUs

Physical level: a single charged particle incident on the IC generates a dense track of electron hole pairs and this ionization causes a transient.

High-level injection (RT-level control flowcharts, or FSMs – state registers), with or without knowledge on the state assignment (can be easily refined when the actual state codes are known):

Targeted faults

Adequate for

Security-related Fault Injections ?

Which aspect ?

Circuit/application modeling ?

Similar ...

 Main difference between security and safety assessment: protections sized according to the potential losses (and attack investments)

Definition of failure types ?

• Up to the user ! (conditions on signals)

Type of faults to be injected during the experiments ?

... Here is the gap!

Fault modeling: paradigms

- □ (Off-line) Test paradigm
 - Defects : manufacturing, aging
 - Permanent / intermittent faults

□ (On-line) Test paradigm

- Faults induced by the environment (or signal integrity)
- Transient (or intermittent) faults
- Low occurrence probability
- High locality (example : particle)

Security paradigm (attacks)

- Faults induced intentionally (hackers)
 - Transient (or intermittent) faults
 - High occurrence probability (induced intentionally)
- Variable locality (example : flash light vs. focused laser beam)

Selection of fault models

□ Gate-level (or upper) modeling, <u>non-intrusive</u> (or semiintrusive) attacks (no circuit modification)

Four basic models

Stuck-at (single / multiple - transient)

Delay faults

> SET (transient inversion of signals)

SEU / MBU => memory elements

Delay faults, SETs: require gate-level knowledge (propagation time)

Stuck-ats: can be applied at RT-level on selected targets

Comparison of models (1)

Stuck-at

- Polarity to be defined: zero or one
- Transient in the security paradigm
- **Can be applied at gate level, or at RT level (on selected nodes)**

Delay faults (positive or negative)

- Can be applied only at gate level, mainly after P&R
- Can be modeled as stuck-ats with the required polarity and a duration equal to the delay, occurring or disappearing when the event occurs on the target signal

Comparison of models (2)

SET

- Can be applied only at gate level, mainly after P&R
- Several definitions ... Usually, forced inversion on a node (without taking into account events that should occur during the fault duration)
 - => equivalent to a transient stuck-at ... on a given polarity
- Duration generally assumed inferior to the clock period

SEU/MBU

- Direct bit-flip in a memory element (direct error, without activation and propagation of a fault)
- Can be applied at gate or RT level
- Few common points with the other models

Comparison of models (3)

Conclusion: 2 models can be sufficient

◆SEU/MBU

Transient stuck-ats, with duration D

- D being potentially superior to the clock period (generalization of SETs => multi-cycle faults)
- Analysis including all possible occurrence instants at gate level (to include all delay faults)
- At RT-level, duration defined by a number of clock cycles (functional analysis) + selection of significant targets

[DURACELL project]

Attributes

High number of possible attributes (or parameters)

- Specify the characteristics and the selection of faults and targets for a given model
- General framework of the study: logic level, transient faults, ... => limitation of the list of attributes

Main attributes in the studied context:

- Duration of faults (if stuck-at)
- Spatial and temporal multiplicity
- Correlation of multiple faults (spatial or temporal)
- > Target and injection time selection (exhaustive/deterministic/random)
- Type of random distributions (uniform, gaussian, ...)

□ Intervals of values: depend on context/technology

Definition of attributes: example

Spatial multiplicity (MBU) – laser attack

Depends on

•...

- Laser focus
- Placement/routing
- Cell sensitivity

P&R-2, focus 1 => mult. up to 1 per element, 4 elements

P&R-1, focus 1 => mult. up to 2 per element, 4 elements

P&R-2, focus 2 => mult. up to 2 per element, 4 elements

High-level analysis: no information on P&R
 => assumptions / limitations (e.g. limited to the elements in a given register), but gives constraints on P&R for coherence

Suitable analyses for fault-based attacks are not so different from previous concerns ...

- □ ... and existing analysis environments and methodologies can be used in this (new) context ...
- **BUT fault models must be revisited ...**
- ... and tools must be extended (e.g. generation of new types of mutants).

Perspective: future view

