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Jack

Dino

WHAT IS THIS ABOUT?
Broken toys are not charged to our clients

car = $3

plane = $5

I’d like to buy 
3 planes

That would be $15

OK, please send 
by DHL

I ’ll send $15 
by postal order

How will you pay?

Dino buys toys from Jack



malicious postman

Dino

The postman wants to know 
what Dino bought for $15

what did he buy
for $15?



In the meanwhile Jack prepares 
the DHL



and gives it to the postman



Who kicks it strong enough to 
break one toy



and gives it to Dino



a week later he monitors Dino’s  
postal order...

= 2 × 5 = $10

= 4 × 3 = $12

Lesson learned: Fault attacks can also extract secrets 
from tokens!

Hardware faults can have various sources:
voltage glitches, light beams, laser beams...



How is this done 
experimentally?



An Experimental Chip

Synchronous µP
Clocked processor

Secure µP
Asynchronous processor 

Dual Rail Implementation

Memory Encryption Unit



The Target

• Currently used in 
� Pagers, cordless phones, automotive electronics, radio systems,…

• General Purpose 16-bit RISC processor
• 2 stage pipeline
• Very basic instruction set
• Experimental version with 4 usable registers



Expected Behaviour

• Asynchronous Processor
� Low EM emitter => immune against EMA
� Can work at very low voltages => resistant to glitches

• Dual Rail coding with RTZ
� Constant Hamming weight data
� Same number of transitions
� Unused 1-1 state is propagated and causes circuit to 

deadlock => resistant against Light fault injection

counteracts any 
PA or EMA



Aim of Injecting light/laser

• Test the effectiveness of the dual-rail encoding of the 
asynchronous design

• Set-up used is similar to the previous one
• We run a short piece of code which is synchronised 
with the light/laser shoot

• The time of the light injection and the behaviour of 
the processor are monitored by 

• by monitoring the code execution via the power curves 
themselves

• by observing the effects on the results of the XOR



Injecting white light

• We injected pulses of white light onto the entire 
chip.

• No particular effect was observed except for 
punctual increases in the power consummed at the 
instants the light pulses were injected.

• This could be explained by 
� 1° The weakness of our light source
� 2° The layer of metal filings that, according to us, 

filters out the light injected



Laser



Laser



Target Chip



Laser on the AL-AH registers

AL-AH registers

Targetted region



Laser on the ALU

ALU

Regions where 
faulty behaviours 
were obtained



Laser on the ALU

• Faulty behaviours occurred only during the 
execution of the XOR (time T3)

• Two ‘families’ of effects could be observed
� The result of the XOR is false, e.g.

•0x0001 xor 0x0013 giving 0x0025
•0x0001 xor 0x0010 giving 0x0023
•0x0001 xor 0x002D giving 0x0059
•0x0001 xor 0x0028 giving 0x0053

� The result of the XOR is always 0x0001



Laser on the X register

X register

Targetted region



Laser on the X register

• No matter when we shot the laser (T1-T4), the 
result returned for the XOR execution never 
corresponded to the arguments passed

• In our program, the X register contains the base 
address at which the data are loaded from and 
stored to.

• The X register is expected to contain 0x12
• A memory dump showed that data at addresses like 
0x52, 0x92 or 0x112 were unnecessarily modified !

• We corrupted the value read from register X



Laser attack on Secure µP

• A careful positionning of the laser beam gave 
exploitable faulty behaviours

• The apparent poor resistance of the registers is due 
to single flip-flop implementation
� => It’s not enough to have buses only in dual rail!

• The behaviour of the ALU, which is in dual rail, has 
not been explained.



Short Glitches on the Secure µP

• Kept the same program as executed for the laser 
experiments

• Used glitches where power drops from 1.8V to 0V 
for d ns

• For short d, the processor would just stop and just 
resume normal execution when power is restored

• We monitored the instant the fault was injected: 
falling edge of glitch was kept constant (just after 
1st IO) and we moved the rising edge (by varying d)



CLIO Glitch Injector



Corrupting LOAD of 1st operand

• Rising edge of glitch occurs at instant T2

• The result of the XOR operation was the logical 
inverse of second operand

• The XOR operation executed was between the 
second operand and 0xFFFF as first operand !



Corrupting 1st operand 
BLUE curve : Normal execution
RED curve : Execution with Vcc glitch

T4
STORE

T3
XOR

T2
LD Op1

T1
LD @

POWER SIGNATURES



Modifying STORE of result

• Likewise, we managed to make the rising edge of 
the glitch coincide with the STORE instruction (T4)

• As a result, the memory content corresponding to 
the @ at which the result should be contained was 
never ‘updated’…

• We corrupted the execution of the STORE 

• If we looked only at the result, it’s as if the XOR 
operations never took place



Dumping data memory

• By increasing to the max the duration of the glitch, 
we dumped the data memory on the Dual-Rail XAP

• Instead on sending and displaying 3 words from the
data memory, we had 51 consecutive 16-bit words 
from the data memory



Dumping data memory
XOR normally executed

Glitch



Glitches on the Asynchronous µP

• We put the first operand to 0xFFFF
• We short-circuited the STORE of the result
• We modified the value and the quantity of the data 
sent on the UART

• For the non protected-µP we dumped 51 words 
from data memory
� The Sec µP and the non protected -µP having the 

same nature, there is no reason for not reproducing 
the same effect on the Sec-µP: the glitch generated 
did not happen at the right time, the Sec-µP being 
slower than the non protected-µP



Gemplus’ Internal CQP

loop on CEVA commands and on hit t’s
{ 
dichotomy loop on Laser intensity / glitch amplitude

{
XY table loop on X

{
XY table loop on Y

{test normal behaviour}}}}

simplified fault qualification campaign takes around 4 weeks
thorough campaign may take a couple of months
if the campaign fails Ö internal CSP process



What Is The State of The Art?

Card manufacturers and chip manufacturers are not evenly protected

Nearly no protections in newcomers’ chips (all remains to do)

Protection by blindly stacking protections (ineffective)

Uneven investment level by manufacturers

Academia is taking over… ☺



Experimental
Differential 
Fault
Attack 
on RSA



• In the RSA experiment, the fault injection mean was the 
laser

• The appropriate set-up must be performed for the 
following parameters:
� space localisation (x1,y1)
� Fire window size (x2,y2)
� Light intensity
� Light wavelength

• Finding the proper injection parameters is quite difficult

Fault injection step



Fault exploitation step

• The target of the attack is the RSA CRT algorithm

• The fault exploitation scheme is well known as the 
Lenstra attack.



� Encryption:

• One for encryption (public)
• One for decryption (secret) AA AAM C M

RSA

AA AAH(M) S H(M)

� Signature:

• One for signature (secret)
• One for verification (public)

• Two modes:



Chinese Remaindering Remainder

• The Chinese Remainder Theorem is used in RSA in order 
to speed up exponentiation.

• Exponentiation is performed in three steps
� sp = md mod p is computed
� sq = md mod q is computed
� the signature is recombined with CRT as 

s = a.sp + b.sq mod n,

• The constants a and b are precomputed such that
a = 1 mod p, b = 0 mod p,
a = 0 mod q, b = 1 mod q.



Attack on CRT exponentiation

• This attack was first published by Lenstra.

• Hypothesis: 
� s, signature of a message m is known. 
� a fault is injected in the exponentiation mod p.

• Due to error injection, sp becomes sp’

s’ = a.sp’ + b.sq
s’-s= (a.sp’+ b.sq) - (a.sp+ b.sq)
s’-s= a.(sp’- sp)

the prime q divides a and can be retrieved by GCD



• Public key (N,e)

• One execution during target algorithm to have a right 
signature S

• One execution with the fault injected during one of the 
two  CRT exponentiation calculation to get the wrong 
signature S’

Tools



Victim Card Reader

Parameters

Fault Generation

Keys Recovery

Erroneous Signature S’

Card

S’=RSA(M)
Message (M)

Parameters

Message (M)

Signature (S) Signature

Operating mode

S=RSA(M)



• Attack performed on RSA CRT: the fault is introduced during one of the 
two  exponentiations

• The fault is not detected and therefore it is exploitable by the external 
world

• The fault directly lead to the secret recovery by a simple GCD computation

• Fault attack was successful because:

� Component (HW) is sensitive regarding the fault injection mean 
(laser)

� The fault injection equipment have been properly set-up

� RSA CRT implementation (SW) is sensitive to differential fault 
analysis, fault is injected at appropriate instant in time 

Experiment 1: Insecure design



• Attack performed on RSA CRT: the fault is introduced during one of the 
two  exponentiations

• An error status word  92 00 is returned by the card

• The fault is detected and the false signature is not returned to the 
external world

• The fault is not exploitable

• Fault attack was thwarted because:

� A software detection mechanism has detected the false 
signature

� The false signature is not returned to the external world

� The fault injection step is successful but the exploitation step is 
not possible anymore 

Experiment 2: Secure design



General Defense Strategy Used

Resist - Detect - React



Fault exploitation (DFA) in a regular 
DES/3DES algorithm

Fault exploitation (DFA) in a DPA protected 
DES using randomised SBOX stored in RAM

Experimental
Differential 
Fault
Attack 
on DES



DES Round

EP

PP

SBOX

R15

R16L16

KS16

L15



15th round DPA

• The Last round of the DES

Transfom of [L15,R15] to 
[L16,R16] using K16

Permutations are ignored for 
convenience

L15L15

L16L16 R16R16

R15R15

K16K16

SS--BoxBox

15)1615(16
1516

LKRSR
RL

⊕⊕=
=



15th round DPA

• If R15 is changed to R15’, without changing L15

15)1615(16
1516

LKRSR
RL

⊕⊕=
=

15)1651(61
5161

LKRSR
RL

⊕⊕′=′
′=′

15)1651(15)1615(6116 LKRSLKRSRR ⊕⊕′⊕⊕⊕=′⊕
)1661()1616( KLSKLS ⊕′⊕⊕=

• where S(x) is the S-box function

• Then



15th round DPA

• For each S-box, verifying:

• Gives a list of possible key 
values

• Leads to an exhaustive search

R16R16 R16’R16’

K16K16K16K16

L16L16 L16’L16’

S1S1S1S1

262



15th round DPA

• The number of hypothesis’ given for each six bits of the 
key can be found using the tables, described in, 
”Differential Cryptanalysis of DES-like Cryptosystems” by 
Biham and Shamir

• More faulty ciphertexts rapidly decreases the number 
possible keys

• Best Results by attacking expansive permutation in 
fifteenth round

• The same technique can not reasonably be applied to 
higher rounds (differences in R14 leads to an exhaustive 
search of       DES executions)552



15th round DPA

C’1 key space
C’2 key space

C’3 key space

Final Key
space

• Multiplying the number of 
faulty ciphertext directly 
reduces the final key space 
size and therefore the 
complexity of the 
exhaustive search



Applied to 3DES

• If faults are generated during the fifteenth round of the 
last DES, and the fifteenth round of the second DES.

• For every hypothesis of the first key we have a list of 
hypotheses for the second key.

• Sets hypotheses with an impossible differential can be 
ignored.

• With one fault in the last round and one fault in the 
second round we have an exhaustive search of 512



Applied to 3DES

• With two faults in each DES the search can be reduced to       
DES executions

• The same process can be applied to 3DES with three 
different keys.

• One fault per key giving a search of 

• With two faults per DES key giving a search of 

152

202

752



Experimental Implementation

• With glitch injection

• Attack takes less than 2 minutes on a PC.



For More Information, Remember

david.naccache@gemplus.com


