Cryptanalysis of Two Protocols for RSA with CRT Based on Fault Infection

Sung-Ming Yen¹ and Dongryeol Kim²

¹ Dept of Computer Science and Information Engineering National Central University, Taiwan, ROC http://www.csie.ncu.edu.tw/~yensm/lcis.html

> ² Information Security Policy Division Korea Information Security Agency, Korea

2

Outline :

- 1. Preliminary Background of CRT-based Cryptanalysis
- 2. Review: Two CRT-based RSA Computation Based on Fault Infection
- 3. Cryptanalysis of CRT-based RSA with Fault Infection
- 4. Conclusions

1. Introduction and Preliminary Background

RSA speedup with CRT CRT-based fault attack

RSA Speedup with CRT

RSA speedup based on CRT: • Given p, q, (n=p*q), d, and m, $S=m^d \mod n \ can \ be \ sped \ up \ by$ $s_p=(m \ mod \ p)^{d \ mod \ (p-1)} \ mod \ p$

 Gauss's CRT recombination S=CRT(s_p, s_q) [(s_p×q×(q⁻¹ mod p)+s_q×p×(p⁻¹ mod q)] mod n = [s_p×X_p + s_q×X_q] mod n
 Garner's CRT recombination S=CRT(s_p, s_q) s_q + [(s_p - s_q)×(q⁻¹ mod p) mod p] × q

4

CRT-based Fault Attack

Fault attack on the computation of s_p & s_q
 Given a faulty result of S'=CRT(s'_p, s_q)
 q=gcd((S'^e - m) mod n, n)

Shamir's Countermeasure

Shamir's countermeasure (extend modulus then reduce modulus)

 $s_{pr} = m_{pr}^{d_{pr}} \mod pr$ $s_{qr} = m_{qr}^{d_{qr}} \mod qr$ where $m_{pr} = m \mod pr \& d_{pr} = d \mod \phi(pr)$ and r is a random prime.

Output S <u>only if</u> (s_{pr} mod r) = (s_{qr} mod r)
 S=CRT(s_p, s_q)
 =CRT(s_{pr} mod p, s_{qr} mod q)

Other possible countermeasures:

(All need and strictly depend on the reliability of a comparison operation!)

Compute S twice and compare the results
Given S = m^d mod n, verify whether m ?= S^e mod n

Laboratory of Cryptography and Information Security

Attack on Shamir's Method

Possible attacks on the <u>Zero flag</u>!

Implementation of checking

(s_{pr} mod r) =? (s_{qr} mod r)
Implementation of "a ?= b"
SUB a,b (or CMP a,b)
JZ (jump if zero)
It highly depends on the zero flag!

Another reported CRT-based attack

 The main weakness: It's assumed that correctness of s_{pr} and s_{qr} implies the correctness of both s_p and s_q

where $s_p = s_{pr} \mod p$

possibly $s'_p < -- s_{pr} \mod p$

The checking of whether

 $(s_{pr} \mod r) = ? (s_{qr} \mod r)$ cannot detect the error in s'_{p}

Importance of CRT-based Attack

It has already been widely employed But a single fault \rightarrow total break down

False alarm attack on RSA+CRT

- may be initiated by any malicious attacker
- → **Denial of service** attack
- So, any potential CRT-based attack should be carefully considered

2. Review: Two CRT-based RSA Computation Based on Fault Infection

No fault-free decision procedure will be assumed in the countermeasure!

Fault Infective CRT Speedup

- No checking procedure will be assumed that should be fault free
- When a "random" error occurred in s_p (or s_q) it will influence computation of s_q (or s_p) or the overall computation of S (for example CRT(s'_p, s_q) or CRT(s_p, s'_q) is <u>not accessible</u>)

The CRT-1 Protocol

Parameter selection:

- $n = p \times q$ (usual key pair e & $d = e^{-1} \mod \phi(n)$)
- additional key pair e_r & d_r=e_r⁻¹ mod \u03c6 (n) d_r=d-r (r is a small integer)

The protocol:

- Compute $k_p = \lfloor m/p \rfloor \& k_q = \lfloor m/q \rfloor$ where $\lfloor x \rfloor$ means floor function
- Compute m^{dr} mod n with CRT speedup s_p=A^{dr mod (p-1)} mod p where A=m mod p s_q=Â^{dr mod (p-1)} mod q where = ((s_p^{er} mod p)+k_p×p) mod q
 Based on CRT S=CRT(s_p, s_q)×(Ã^r) mod n where Ã=(s_a^{er} mod q)+k_a×q

If the computation is fault free: Message reconstruction 1: $s_{q} = \hat{A}^{d_{r} \mod (p-1)} \mod q$ where $\hat{A} = ((s_p^{e_r} \mod p) + k_p \times p) \mod q$ = **m** mod q Message reconstruction 2: $S=CRT(s_p, s_q) \times (\tilde{A}^r) \mod n$ where $\tilde{A} = (s_a^{e_r} \mod q) + k_a \times q$ =**m**

The CRT-2 Protocol

Parameter selection:

- n=p×q (usual key pair e & d=e⁻¹ mod ϕ (n))
- additional key pair e_r & d_r=e_r⁻¹ mod \u03c6 (n) d_r=d-r (r is a small integer)

The protocol:

- Compute $k_p = \lfloor m/p \rfloor \& k_q = \lfloor m/q \rfloor$
- Compute $m^{d_r} \mod n$ with CRT speedup $s_p = A^{d_r \mod (p-1)} \mod p \text{ where } A = m \mod p$ $s_q = A^{d_r \mod (p-1)} \mod q$

Based on CRT

S=CRT(s_p, s_q)×(\hat{A}^r) mod n where $\hat{A} = \lfloor (m_1 + m_2)/2 \rfloor$ $m_1 = (s_p^{e_r} \mod p) + k_p \times p$ $m_2 = (s_q^{e_r} \mod q) + k_q \times q$

18

If the computation is fault free:

Message reconstruction: $S=CRT(s_{p}, s_{q})\times(\hat{A}^{r}) \mod n$ where $\hat{A} = \lfloor (m_{1}+m_{2})/2 \rfloor$ $m_{1}=(s_{p}^{e_{r}} \mod p)+k_{p}\times p$ =m $m_{2}=(s_{q}^{e_{r}} \mod q)+k_{q}\times q$ =m

Laboratory of Cryptography and Information Security

3. Cryptanalysis of CRT-based RSA with Fault Infection

Exploiting faults that usual CRT-based attack did not consider

20

Attack Exploiting Fault on **Temporary Parameters**

- Attacks exploit faults that usual CRT-based attack did not consider
 - Exploiting faults on temporary parameters that usual CRT speedup does NOT required
 - It has been overlooked previously

Attack on CRT-1 Protocol

- In the CRT-1 protocol:
 Suppose
 - k_p , s_p , and s_q are correct
 - but k_q becomes incorrect (when computed or accessed) k_q --> k_q'

We got

- S'=m^d+R*q mod n (R: random integer)
- leads to <u>q=gcd((S'^e m), n)</u>
- It can be proven that fault on k_p disables the above attack

Laboratory of Cryptography and Information Security

Attack on CRT-2 Protocol

- In the CRT-2 protocol:
 Suppose
 - k_p , s_p , and s_q are correct
 - but k_q becomes incorrect (when computed or accessed) k_q --> k_q'

We got

- S'=m^d+R*q mod n (R: random integer)
- leads to <u>q=gcd((S'^e m), n)</u>

Fault on k_p leads to p=gcd((S'^e - m), n)

24

Basic consideration:

 Do not make unreasonable assumption, e.g., all the checking operations are error free

Important thing to remind again:

- Be careful about all CRT-based attack
 - ✓Explicit fault/attack
 - Implicit fault/attack
- The false alarm attack may lead to the "DoS" attack

One technical issue to notice:

 More "checking" operations being used will lead to a less reliable countermeasure

Open problem:

- Is error free checking operation necessary?
- More research is still necessary

