

Injection of Multiple Bit-Flips for Counter Measures Validation

Karim Hadjiat, Abdelaziz Ammari, Régis Leveugle*

TIMA Laboratory – Grenoble – FRANCE

* Partly supported by the DURACELL and VENUS Projects

Motivation

Recent threats related to malicious fault injections in circuits (fault-based attacks)

- Need for early analyses to evaluate the criticality of faults in the various parts of a circuit
 - => Identify the real locations to be protected
 - in an application-specific circuit (e.g. cryptographic IP)
 - => Minimal hardware counter measures with respect to the application requirements (focus on real security assets)
- Differences between paradigms: impact on tools and fault models (cf. FDTC'04)

Fault modeling: Multiple Bit-Flips in fault-based attacks

Early fault effect analysis: methods and tools

□ A new type of mutants for multiple bit-flips

Experimental results

Conclusions and perspectives

Evolution of needs in fault injection tools

□ Initially was the Single Event Upset in space ... => single bit flip modeling usually considered as accurate

- **Then came Very Deep Submicron CMOS technologies**
 - Smaller geometries / node capacitances
 - Lower voltages
 - Higher clock frequencies
 - Lower noise margins / increasing noise level
 - Decreasing TTM
 - Dependability concerns in "consumer" electronics

 Early analyses
 (avoid long feedback, reduce costs)

Single Event Transients

And also ...

New security threats: fault attacks Cryptography primitives: DES / RSA / AES ...

Security locks (ratification counters, ...)

Various possibilities

Power glitch

◆Flash light

Laser

•..

Ultimately: logic fault(s)

In flip-flop(s) => similar to SEU ?

In combinatorial logic => similar to SET ?

SEU or multiple bit-flips ??

Spatial multiplicity ("MBF") – laser attack

Depends on

- Laser focus
- Placement/routing
- Cell sensitivity

R1 R1	R2 R2
R3	R4
R3	R4

P&R-2, focus 1 => mult. up to 1 per element, 4 elements

P&R-2, focus 2 => mult. up to 2 per element, 4 elements

High-level analysis: no information on P&R => assumptions / limitations (e.g. limited to the elements in a given register), but gives constraints on P&R for coherence

SET propagation

□ A single transient can reach several outputs of the block during the latching window

=> Multiple bit errors can be expected

□ The exact evaluation requires very low level data (after P&R)

Logic masking ?

Attenuation/suppression (electrical masking) ?

No effect ...

Out of latching window (temporal masking) ?

=> Exact evaluation of effects not compatible with early evaluation

Solution: injection of multiple bit errors ...

- Fault injection environments used for early dependability analysis can no more rely only on the classical single bit flip fault model, especially in the case of intentional faults
- Extension to multiple bit-flips (MBFs) is required and must be automated
- **This work presents such an extension**

Goals of our analysis environment

Early dependability analysis

- RT-Level descriptions
- Only potential knowledge of synthesis-related information (e.g. state assignment or specific synthesis procedures limiting the possible fault effects)

□ Automated

Compatible with classical up-to-date industrial design flows

Qualitative/quantitative data usable for field failure rate prediction (representative of actual faults)

Injection process compatible with both simulation and emulation
 => additional constraints

Dependability analyses: alternative results

K. Hadjiat A. Ammari R. Leveugle

Controlled generation of mutants

- Classical software-like mutants do not allow the targeted analyses
- Controlled generation'' of mutants implies:
 - Significant faulty behaviors

(equivalent to the fault effects observable in the field)

- Optimization for synthesis (compatibility with emulation)
- Taking into account the limitations of hardware emulation systems

Criteria for quality evaluation:

- Number of additional I/Os (number of sub-campaigns)
- Number of gates after synthesis (emulation hardware complexity)
- Maximum frequency (time required for the injection campaign)

New mutant generation

Extension of previous work

- Multiple bit flips
- Heterogeneous fault/error injection

(single bit-flip, multiple bit-flip, erroneous transitions)

Restrictions on multiplicity

- Maximum value
- Localization
 - No restriction (all elements selected at all time as targets)
 - Limited to a sub-block (selection of the target block)
 - Limited to a register (selection of the target register)

Limitation or not to a sub-block can give the same results in case of architectures with error confinement and optimized P&R

Target architecture

- Modifications of entities (external signals), hierarchy and processes (combinatorial and sequential)
 + creation of the virtual register(s) and clock control
- □ Automated for a limited synthesizable description template
- Trade-offs between generality and complexity: two options currently implemented (register level, sub-block level)

Experiments

- Case study: core performing modular multiplications for the computation of RSA encryption (Montgomery)
- Two versions: initial and hardened (based on parity per 32-bit word)

Goals

Complexity analysis of the generated mutants

Analysis of the erroneous configurations of a set of internal/external signals and of the sequences of activations (''states'' and ''transitions'' of the error propagation graph, detection is a terminal state)

Injections not limited to a single register (more complex case for analytical analysis)

Results: complexity (Montgomery, Virtex II)

Results: I/Os (Montgomery, Virtex II)

Reduced I/Os => Impact on - prototyping requirements (platform complexity) - length of experiments (#bits to be transferred)

Results: frequency (Montgomery, Virtex II)

Results: impact on the analysis efficiency (Montg)

Initial circuit (before hardening):

Multiplicity	States/Transitions	Common States/Transitions	Specific States/Transitions	Specific States/Transitions (SEU)		
1	31/69					
Multiple fault injection not limited to a single register						
2	39/95	30/67	9/28	1/2		
3	37/89	30/65	7/24	1/4		
4	39/94	30/63	9/31	1/6		
5	48/121	31/65	17/56	0/4		
6	48/122	31/65	17/57	0/4		

=> More complex error propagation paths when the multiplicity increases

Results: impact on the analysis efficiency

Comparison of results obtained with the two versions of the Montgomery core

Odd multiplicity: only transient erroneous states are recorded – 100% detection Otherwise: ~50% detection, simpler error propagations only for large multiplicity

Results very similar in terms of erroneous configurations (states) and propagation paths (transitions)

Conclusions

- □ Multiple bit soft errors is an increasing concern ...
- In the automatically take into account spatial (and temporal ?) multiplicity
- A new generation of mutants has been reported targeting heterogeneous fault/error models
- Practical results show that considering only single bit flips can lead to optimistic conclusions or non optimal protections
- **Prototypes currently fabricated (ST HCMOS9 technology)**
- Experiments using laser-based attacks scheduled in September to compare with simulation results (actual probability to detect an attack ?...)

Thank you !

Any questions ?

VHDL modifications: examples (1)

Insertion of the injection control signals in the entity definition:

```
entity My entity is
 port
   (-- initial inputs/outputs
   clk, reset : in std_logic ;
    ...
     -- control inputs insertion
   En_inj : in std_logic_vector(i downto 0);
   En_asyn : in std_logic;
   num_bit1 : in integer range a to b;
   num bit2 : in integer range a to b;
    ...
   num bitn : in integer range a to b
    );
end My_entity;
```

- -- Clock and initialization signals -- Other signals
- -- Number of bits to invert-- Asynchronous injection control
- -- Index of 1st bit to modify
- -- Index of 2nd bit to modify
- -- Index of nth bit to modify

VHDL modifications: examples (2)

Process added to modify the circuit clock:

The signal Asyn_inj is used to asynchronously determine the injection times; an extra clock edge is sent to the target registers at injection times.

VHDL modifications: examples (3)

Basic process defining the modification in the virtual register and the register values at injection time :

```
process (En_inj, num_bit1, ..., num_bitn, Elemt0,..., Elemti)
variable All reg tmp : std logic vector(l downto 0);
begin
    All reg tmp := Elemti ...&Elemt1&Elem0;
    if En_inj="one" or En_inj="two" or ... En_inj="n" then
         All reg tmp(num bit1) := not All reg tmp(num bit1):
    end if:
    if En inj="two" or ... En inj="n" then
         All_reg_tmp(num_bit2) := not All_reg_tmp(num_bit2);
    end if:
    if En inj="n" then
         All reg tmp(num bitn) := not All reg tmp(num bitn);
    end if:
    Elemti inj <= All reg tmp(l downto l-li);
    Elemt1 inj \leq All reg tmp(n downto n-l1);
    Elemt0 inj \leq All reg tmp(n-l1-1 downto 0);
end process;
```


Results: impact on the analysis efficiency (Montg)

Hardened circuit:

Multiplicity	States/Transitions	Common States/Transitions	Specific States/Transitions	Specific States/Transitions (SEU)		
1	10/18					
Multiple fault injection not limited to a single register						
2	38/95	9/15	29/80	1/3		
3	10/18	7/12	3/6	3/6		
4	38/91	9/10	29/81	1/86		
5	12/22	6/10	6/12	4/8		
6	41/101	10/10	31/91	0/8		

- => Few states/transitions when the multiplicity is odd
 - (only transient erroneous configurations before 100% detection)
- => Similar complexity of error propagation paths in the other cases

Results: case of crash/detection states (Montg)

Multiplicity	%Crash Initial version	%Crash Hardened version	%Detection Hardened version	%Crash+Detection Hardened version		
1	2.5	2.45	97.55	100		
Multiple fault injection not limited to a single register						
2	6.6	6.6	47.77	54.37		
3	9.3	9.29	90.71	100		
4	12.3	12.34	50.10	62.44		
5	15.4	15.38	84.62	100		
6	18	18.29	47.73	66.02		

=> Crash situations during RT-Level simulations increase with multiplicity

