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Some Observations and
Motivation

m Current cryptographic keysizes are “computationally secure”

m But: real and tangible threat from side-channel attacks

m Passive attacks have been sufficiently covered in the literature
m Active attacks may prove to be more difficult to defend against
m Need for robust cryptosystems

m How do you prevent somebody from driving a spike

(electrical/mechanical) through your chip?
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The Famous CRT Attack on RSA

m Bellcore attacks: Boneh, et al. 1996:
Introduce arbitrary fault into one of the exponentiations, compute
GCD(S-S’,N)=p --> Modulus is factored.

m Similar attacks on other signature schemes

m  Shamir’s countermeasure does not always help [BOS02]

m Raised awareness of necessity to verify signature before returning result.

m  Problem: How to tell if something went wrong without verifying the signature?

m  Need for lightweight fault-tolerance measures to add robustness to finite field
arithmetic
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Fault Tolerance requires Error
Correction

Need to introduce redundancy into system

Use meaningful, i.e. large distance, redundancy to spot errors and/or correct
them (i.e. codes!)

Fundamentally different error model: Malicious adversary vs. binary
symmetric channel

Also: computation instead of transmission
How do we compute with encoded values? Operations need to be preserved

(Hint: Cyclic and Arithmetic codes possess an arithmetic structure).
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Some more Observations

m Underlying arithmetic structure of public key cryptosystems are
finite fields, either prime (RSA, DH, ECC) or extension fields
(ECC)

m Cyclic and arithmetic codes use similar finite field arithmetic

m Can we make use of finite field structures to achieve fault-
tolerance?

m Idea: Homomorphic Embedding using scaling techniques
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Homomorphic Embedding

m  Use homomorphism to embed field elements into larger (i.e. redundant)
ring:
Perform all computations in ring w/ redundancy

Homomorphism ensures that field operations are preserved in ring as long as there
is no fault

Faults can be detected after each atomic operation
Decode the final result only at the very end if no errors have occurred in any step

Transformation function ¢» : F — G for elements a, b € F:
Preserves additive identity: ¢(0) =0

Preserves addition: ¢(a) + ¢p(b) = d(at+b)

Preserves multiplication: ¢(a'b) = ¢(a)p(b)

Does not necessarily preserve multiplicative inverse
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Two strategies
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Practical Homomorphisms

m Extension fields: ¢:GF(q™)->GF((q™)*)

“Natural embedding”

Too restrictive to be practical (huge overhead for n>2)
m Ring homomorphisms:

Prime field into integer ring:GF(q) -> Zp

Extension field into polynomial ring:GF(q™)->GF(q)[x]

m Homomorphism ensures that ring operations preserve field
operations

m Perform all necessary operations in the ring, then transform the
result back

m Important: Choose homomorphism with “useful” redundancys, 1.e.
no naive embedding
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Scaled embedding

m [dea losely based on modulus scaling m=p's

m Scaling of field elements with generator value g: ¢(a)=ga € R

m  Goal: Partition the ring into cosets of which only one contains valid
symbols

m Error detection by checking for membership

m Scaling factor s determines amount of redundancy r=log,s and form
of effective ring modulus
m=qs

m Choose s such that m has pseudo-Mersenne form 2%°+u (prime
fields) or x" + u(x) (extension fields)
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Ring operations

m Addition:
d(at+b) = ¢(a) + dp(b) = g(a + b) mod m

m  Multiplication:
d(a) - ¢p(b) = g?ab != ¢p(a’b) mod m

m Define alternative *-Multiplication:

¢(a)*¢(b) = (ga-gb)/g mod m = ¢(a'b)
m Note: Division needs to occur strictly before modular reduction step!
m Also: Division is costly and sits on critical path
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Error Model

m  Assumption of additive errors that may be introduced by an attacker, e.g.
through light-attack with focussed laser beam

m Let A= ¢(a), B= ¢(b) and e, ey error terms

C' = (A -+ E.f‘;l) * (B -+ EB)

= (2-a-b—|—( a.-eB—b—b-eA T €4 -€R q mod m
9 9
€A " €R

9

=CH4+a-eg+b-eq+ (mod m)
=C +ec

m  Error detection through reduction mod s (but outside of critical path!)
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Idempotent Scaled Embedding

m Find idempotent generator g=g? mod m
m  Arithmetic AN codes (Proudler 1989)
m Same principle applies to binary fields GF(2)->R

m However, one-sided error masking flaw due to distributive law:

A" = ¢;(a)+eq
B = ¢;(b)
A"-B=(g-a+ea)(g-b) (modm)
=g a-b+g-b-ey (modm)
= ¢,;((a+ e4)b)
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Idempotent AN+B codes

m  Exist whenever scaling factor s co-prime with field modulus p

(s7! mod p) s

(p

m Define scaling factor g and constant term c: g

c mod s) p

m g.cidempotent and g.c =0 mod m
m  ¢(a) =gatc mod m

m  Use only for multiplication, since addition is no longer preserved by AN+B
codes

m  Again, also applies to extension fields
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Multiplication

m  Re-define *-Multiplication as
AxB=(g-a+c¢)-(g-b+c)—c (modm)
=g-a-b+c-gla+b)+c—c (modm)
=¢;(a-b)=g(a-b) (mod m)

m  Conversion from AN to AN+B codes only necessary between heterogeneous
operations.

m  AN+B codes no longer mask one-sided errors like AN codes do:

A *B=(g-a+c+ea)(g-b+c)—c (modm)
=gla-b)+ealg-b+¢) (modm)

=e4 mod s
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Undetectable Errors

m  Addition: e,=-egmod s -> e~ =0 mod s
m  Occurs with probability 1/s?

m  Multiplication:
AxB' ' =(g-a+es+c)-(g-b+ep+c)—cmodm
=gla-b)+ealg-b+c)+eplg-a+c)+es-egmodm
€ry = €Alg-b+c)+eplg-a+c)+es-egmodm .

m  Since g=0 mod s and c=1 mod s we have e,=e, + e5 + €,-¢5 mod s.

m Undetectable with probability of d(s)/s?> (®:Euler totient function)
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Algorithm Based Fault
Tolerance

Error detection only, no correction. But operation replay a possibility, if
operands still available.

Can be implemented as check for C=0 mod s (possibly beside the main
data-path)

Requires full modular reduction by s (no special prime), but outside the
critical path in HW, or only periodically in SW.

Can only handle transient faults gracefully, permanent faults not
correctable
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Review: Cyclic Binary and
Arithmetic Codes

FDTC'05

Cyclic codes: principal ideals generated by divisors of x"-1 mod q
If symbol (x,X,....,X,. ;) € C, then shifted symbol (x,_,X,-...,X,,) € C, any
valid symbol multiplied by any polynomial is again a valid symbol.

Arithmetic codes have similar properties, except that carries come into play
and require a different interpretation of minimum distance

Scaled embedding is identical to computing with cyclic or arithmetic codes, if
m=2"-1 or m(x)=x"-1 (q=2)
s=m/p (p is determined through factorization of m)

Unfortunately cyclic codes too restrictive for embedding large extension fields
of size 100<k<500 (requires large irreducible polynomial)

Only few suitable parameters (d 1s design distance):

n|263|359(383[479]1503|719]|839|863|887(983
KkI1311179(191]1239(251|359]419]|431(4431491
Ol 8191911319 11111 9] 9 |11
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Extended Parameter Sets

m Allow m to have pseudo-Mersenne form: m=2"+u or m(X)=x"+u(X),
with weight u small, e.g. u=3,5,9,...

m Still very efficient modular reduction, only a few extra adds

m Better chance of finding suitable parameters yielding large irreducible
factors or primes (see paper appendix for examples)

m No longer purely cyclic codes, but rather “accumocyclic” codes

m Code family not reported 1n literature
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Conclusions

m Scaled embedding based ring homomorphism are a lightweight method for
error detection in finite field arithmetic

m Large possible range of scaling factors for trade-offs between performance
and redundancy

m Drawback:
Choice of field somewhat dependent on factorization of scaled modulus
Not all errors can be detected equally likely
Probability of detection is only dependent on error pattern, but not data.

m  Future work: Characterization of “Accumocyclic”’ codes wrt minimum-/
design-distance
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Thanks for your attention!

Any questions?
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