Practical Fault Countermeasures for Chinese Remaindering Based RSA

Mathieu Ciet Marc Joye

Gemplus & CIM-PACA Gardanne, France

FDTC '05

Outline

RSA and Fault Attacks

- RSA Cryptosystem
- RSA Signatures in Practice
- Known Fault Attacks
- Protecting [Deterministic] RSA Signatures
 - Known Countermeasures
 - Infective Computation
 - BOS Algorithm
- Proposed Fault Countermeasure
 - Our Algorithm
 - Security Analysis
 - Future Work & Open Problems

RSA Cryptosystem RSA Signatures in Practice Known Fault Attacks

RSA Cryptosystem

- Setup
 - Let N = pq with p, q prime
 - Let (e, d) satisfying $e \cdot d \equiv 1 \pmod{\varphi(N)}$
- Public parameters: {*e*, *N*}
- Private parameters:
 - Standard mode: {*d*, *N*}
 - CRT mode {*p*, *q*, *d_p*, *d_q*, *i_q*}

Signature on message m

 $S = \dot{m}^d \mod N$ where $\dot{m} = \mu(m)$

Verification

 $S^e \stackrel{?}{\equiv} \mu(m) \pmod{N}$

RSA Cryptosystem RSA Signatures in Practice Known Fault Attacks

RSA Signatures in Practice

Deterministic paddings

• FDH [Bellare & Rogaway, ACM CCS '93]

 $\mu(m) = H(m)$ with $H : \{0, 1\}^* \to \{0, 1\}^{\log_2 N}$

- PKCS #1 v1.5 [RSA Labs]
- Probabilistic paddings
 - PSS [Bellare & Rogaway, EUROCRYPT '96]

$$\mu(m) = 0 \|w\|r^*\|g_2(w)$$

with w = h(m, r) and $r^* = g_1(w) \oplus r$ • PKCS #1 v2.1 [RSA Labs]

RSA Cryptosystem RSA Signatures in Practice Known Fault Attacks

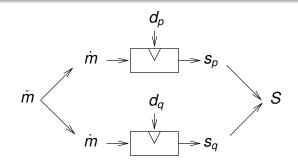
Chinese Remaindering

- Computation of a signature $S = \dot{m}^d \mod N$ using CRT
 - $s_p = \dot{m}^{d_p} \mod p$ with $d_p = d \mod (p-1)$

•
$$s_q = \dot{m}^{d_q} \mod q$$
 with $d_q = d \mod (q-1)$

CRT formula

$S = CRT(s_p, s_q) = s_q + q[i_q(s_p - s_q) \mod p]$



RSA Cryptosystem RSA Signatures in Practice Known Fault Attacks

Flipping-Bit Attack

• Let
$$d = \sum_{i=0}^{\ell-1} d_i 2^i$$

• Flipping bit: $d_j \to \overline{d_j}$

$$\Rightarrow \hat{d} = \overline{d_j} 2^j + \sum_{\substack{i=0\\i\neq j}}^{m-1} d_i 2^i = (\overline{d_j} - d_j) 2^j + \alpha$$
$$\Rightarrow e \cdot \hat{d} \equiv (\overline{d_j} - d_j) 2^j + 1 \pmod{\varphi(N)}$$

• For j = 0 to $\ell - 1$ check if

$$\hat{S}^{e} \equiv \mu(m)^{e \cdot \hat{d}} \equiv egin{cases} \mu(m)^{2^{j}+1} \pmod{N} \Rightarrow d_{j} = 0 \ \mu(m)^{-2^{j}+1} \pmod{N} \Rightarrow d_{j} = 1 \end{cases}$$

RSA Cryptosystem RSA Signatures in Practice Known Fault Attacks

Forcing-Bit Attack

• Let
$$d = \sum_{i=0}^{\ell-1} d_i 2^i$$

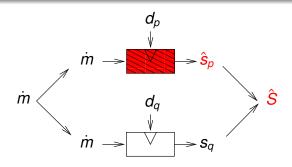
- Forcing bit: $d_j \rightarrow 0$
- Check whether S is a valid signature
 - if so, then $d_j = 0$
 - if not, then $d_j = 1$

- Also applies to probabilistic paddings
- Replacing *d* with *d*^{*} = *d* + *r* φ(*N*) may help to prevent the attack

RSA and Fault Attacks

Protecting RSA Signatures Proposed Fault Countermeasure RSA Cryptosystem RSA Signatures in Practice Known Fault Attacks

GCD Attack



$$gcd(\hat{S}^e - \dot{m} \mod N, N) = q$$

Proof. $\hat{S}^e - \dot{m} \equiv \hat{s_p}^e - x \neq 0 \pmod{p} \iff p \nmid (\hat{S}^e - \dot{m})$ and $\hat{S}^e - \dot{m} \equiv s_q^e - \dot{m} \equiv 0 \pmod{q} \iff q \mid (\hat{S}^e - \dot{m})$

Equally applies if there is a fault on iq

Known Countermeasures Infective Computation BOS Algorithm

Known Countermeasures

- Computing the signatures twice
 - Doubles the running time
- Verifying the signatures
 - Efficient (as public verification exponent e is small)
 - ... but requires the knowledge of e

Known Countermeasures Infective Computation BOS Algorithm

Known Countermeasures

Shamir's trick

$$s_{q^*} = \dot{m}^d \mod (rq)$$

$$\textbf{ $S = \mathsf{CRT}(s_{p^*} \bmod p, s_{q^*} \bmod q) \quad \text{iff} \ s_{p^*} \equiv s_{q^*} \pmod{r} }$$$

Drawbacks

- Requires the knowledge of d
- Does not detect errors on CRT combination
 - e.g., fault on i_q
- Variants
 - Do not detect errors on CRT combination

Known Countermeasures Infective Computation BOS Algorithm

Infective Computation

• Observation [Yen et al., IEEE TC, 2003]

- Decisional tests should be avoided
- Inducing a random fault in the status register flips the value of the zero flag bit with a probability of 50%

Infective computation

Ensure that both half exponentiations are faulty whenever an error is induced:

$$\hat{S} \not\equiv S \pmod{p} \iff \hat{S} \not\equiv S \pmod{q}$$

Known Countermeasures Infective Computation BOS Algorithm

BOS Algorithm

- J. Blömer, M. Otto, and J.-P. Seifert, ACM CCS 2003
- Initialization
 - For two "appropriate" randoms *t*₁ and *t*₂, precompute and store

()
$$p^* = t_1 p, q^* = t_2 q, N^* = t_1 t_2 N$$

() $i_{q^*} = (q^*)^{-1} \mod p^*$
() $d_{p^*} = d \mod \varphi(p^*), e_1 = d_{p^*}^{-1} \mod \varphi(t_1)$
() $d_{q^*} = d \mod \varphi(q^*), e_2 = d_{q^*}^{-1} \mod \varphi(t_2)$

Known Countermeasures Infective Computation BOS Algorithm

BOS Algorithm

Input: \dot{m} Output: $S = \dot{m}^d \mod N$ In memory: $\{p^*, q^*, i_{q^*}, N^*, d_{p^*}, e_1, d_{q^*}, e_2\}$

Compute

●
$$s_{p^*} \leftarrow \dot{m}^{d_{p^*}} \mod p^*$$
 and $s_{q^*} \leftarrow \dot{m}^{d_{q^*}} \mod q^*$
② $S^* \leftarrow \text{CRT}(s_p^*, s_q^*) \mod N^*$
③ $c_1 \leftarrow (\dot{m} - S^{e_1} + 1) \mod t_1$ and
 $c_2 \leftarrow (\dot{m} - S^{e_2} + 1) \mod t_2$

2 Return $S = (S^*)^{c_1 c_2} \mod N$

Shown to be insecure by D. Wagner, ACM CCS 2004

Our Algorithm Security Analysis Future Work & Open Problems

Our Algorithm

Input: \dot{m} , {p, q, d_p , d_q , i_q } Output: $S = \dot{m}^d \mod N$

Solution For two co-prime κ -bit integers r_1 and r_2 , define

$$p^* = r_1 \, p \,, \; q^* = r_2 \, q \,, \; i_{q^*} = (q^*)^{-1} mod p^* \,, \; N = p \, q$$

2 Compute

•
$$s_{p^*} \leftarrow \dot{m}^{d_p} \mod p^*$$
 and $s_2 \leftarrow \dot{m}^{d_q} \mod \varphi(r_2) \mod r_2$
• $s_{q^*} \leftarrow \dot{m}^{d_q} \mod q^*$ and $s_1 \leftarrow \dot{m}^{d_p} \mod \varphi(r_1) \mod r_1$
• $S^* \leftarrow s_{q^*} + q^* (i_{q^*}(s_{p^*} - s_{q^*}) \mod p^*)$
• $c_1 \leftarrow (S^* - s_1 + 1) \mod r_1$
• $c_2 \leftarrow (S^* - s_2 + 1) \mod r_2$

So For an ℓ -bit integer r_3 , set $\gamma \leftarrow \lfloor (r_3 c_1 + (2^{\ell} - r_3) c_2)/2^{\ell} \rfloor$

• Return $oldsymbol{S}=(oldsymbol{S}^*)^\gamma$ mod $oldsymbol{N}$

Our Algorithm Security Analysis Future Work & Open Problems

Security Model

- Fault model #1: Precise bit errors
 - The attacker can cause a fault in a single bit
 - Full control over the timing and location of the fault
- Pault model #2: Precise byte errors
 - The attacker can cause a fault in a single byte
 - Full control over the timing but only partial control over the location (e.g., which byte is affected)
 - new faulty value cannot be predicted
- Fault model #3: Unknown byte errors
 - The attacker can cause a fault in a single byte
 - Partial control over the timing and location of the fault
 - new faulty value cannot be predicted
- Fault model #4: Random errors
 - Partial control over the timing and no control over the location

Our Algorithm Security Analysis Future Work & Open Problems

Security Analysis

- In <u>Step 1</u>, the computations are supposed to be error-free
 - Quantities available in memory (as in BOS)
 - Checks
- Order is important in Step 2
 - *s*^{*}_p, *s*₂, *s*^{*}_q and *s*₁
 - If s_p^* , s_1 , s_q^* and s_2 then a long-lived fault on \dot{m} (after s_1) will be undetected
 - $c_1 = c_2 = \gamma = 1$ but...
 - $gcd(\hat{S}^e \dot{m} \pmod{N}, N) = p$
- Heuristic security analysis
 - Only known attacks are considered

Our Algorithm Security Analysis Future Work & Open Problems

Future Work & Open Problems

Deterministic RSA signatures

- Cryptanalyze the proposed algorithm
- Improve the proposed algorithm
- Propose a better c/measure

Probabilistic RSA signatures

- Mount a fault attack against RSA-PSS
- Prove the security of RSA-PSS in a given security model

Questions

Our Algorithm Security Analysis Future Work & Open Problems

http://www.geocities.com/MarcJoye/

