A Fault Attack on Pairing Based Cryptography

Dan Page (Bristol) and Fré Vercauteren (KU Leuven)

FDTC 2005

Dan Page (Bristol) and Fré Vercauteren (KU Leuven) A Fault Attack on Pairing Based Cryptography

Slide 1

Introduction

- Pairing based cryptography is a (fairly) new area:
 - Has provided new instantiations of Identity Based Encryption.
 - Has provided a wealth of new "hard problems" and proof techniques.
 - ► Has opened a new area for those interested in implementation.
- Like all new ideas, we want to have a good understanding of the security properties:
 - More and more, such properties include resilience to side-channel and fault attack.
 - In reality, it is just fun to try and break things.
- Our goal here is to start looking at fault attacks on the pairing.

Pairing Based Cryptography (1)

► For our purposes, the pairing is just a map between groups:

 $e:\mathbb{G}_1\times\mathbb{G}_1\to\mathbb{G}_2$

where we usually set $\mathbb{G}_1 = E(\mathbb{F}_q)$ and $\mathbb{G}_2 = \mathbb{F}_{q^k}$.

The main interesting property of the map is termed bilinearity:

$$e(a \cdot P, b \cdot Q) = e(P, Q)^{a \cdot b}$$

which means we can play about with the exponents at will.

- To work in a useful way, the map also needs to be:
 - Non-degenerate, i.e. not all e(P, Q) = 1.
 - Computable, i.e. we can evaluate e(P, Q) easily.

In real applications we generally use the Tate or Weil pairing.

Pairing Based Cryptography (2)

- Such pairings were originally thought to only be useful in a destructive setting.
- Boneh-Franklin identity based encryption is perhaps the most interesting constructive use:
 - The trust authority or TA has a public key $P_{TA} = s \cdot P$ for a public value *P* and secret value *s*.
 - A users public key is calculated from the string *ID* using a hash function as $P_{ID} = H_1(ID)$.
 - A users secret key is calculated by the TA as $S_{ID} = s \cdot P_{ID}$.
- ► To encrypt *M*, select a random *r* and compute the tuple:

$$C = (r \cdot P, M \oplus H_2(e(P_{ID}, P_{TA})^r)).$$

• To decrypt C = (U, V), we compute the result:

$$M = V \oplus H_2(e(S_{ID}, U)).$$

Pairing Based Cryptography (3)

- We are interested in the case where $q = 3^m$ and k = 6 since this is attractive from a parameterisation perspective.
- Along with the standard Miller-style BKLS algorithm, there are two closed-form algorithms in this case.
- Both compute e(P, Q) with $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.

The Duursma-Lee Algorithm The Kwon-BGOS Algorithm

+ d

$$\begin{array}{ll} f \leftarrow 1 & f \leftarrow 1 \\ \text{for } i = 1 \text{ upto } m \text{ do} & x_2 \leftarrow x_3^3 \\ x_1 \leftarrow x_1^3 & y_2 \leftarrow y_2^3 \\ y_1 \leftarrow y_1^3 & d \leftarrow mb \\ \mu \leftarrow x_1 + x_2 + b & \text{for } i = 1 \text{ upto } m \text{ do} \\ \lambda \leftarrow -y_1 y_2 \sigma - \mu^2 & x_1 \leftarrow x_1^9 \\ g \leftarrow \lambda - \mu \rho - \rho^2 & y_1 \leftarrow y_1^9 \\ f \leftarrow f \cdot g & \mu \leftarrow x_1 + x_2 + d \\ x_2 \leftarrow x_2^{1/3} & \lambda \leftarrow y_1 y_2 \sigma - \mu^2 \\ y_2 \leftarrow y_2^{1/3} & g \leftarrow \lambda - \mu \rho - \rho^2 \\ \text{return } f^{q^3-1} & y_2 \leftarrow -y_2 \\ d \leftarrow d - b \end{array}$$

The Fault Attack (1)

- Goal: given the result R = e(P, Q) and knowledge of Q, find P.
- ► To make things easier, assume we use the Duursma-Lee algorithm and can reverse the final powering by q³ 1.
- Let e_Δ denote the pairing where we replace the loop bound m with Δ so instead of producing the product:

$$\prod_{i=1}^{m} \left[(-y_1^{3^i} y_2^{1/3^{i-1}} \sigma - (x_1^{3^i} + x_2^{1/3^{i-1}} + b)^2) - (x_1^{3^i} + x_2^{1/3^{i-1}} + b)\rho - \rho^2 \right]$$

the instead produces:

$$\prod_{i=1}^{\Delta} \left[(-y_1^{3^i} y_2^{1/3^{i-1}} \sigma - (x_1^{3^i} + x_2^{1/3^{i-1}} + b)^2) - (x_1^{3^i} + x_2^{1/3^{i-1}} + b)\rho - \rho^2 \right]$$

▶ If we can force the device to compute $R_1 = e_{m\pm r+0}(P, Q)$ and $R_2 = e_{m\pm r+1}(P, Q)$ by provoking some random error *r*, then $T = R_1/R_2$ gives just one factor of the product.

The Fault Attack (2)

- With just one factor, we can extract recover x₁ and y₁ given knowledge of x₂, y₂, r and b:
 - We make the target device to lots of pairings and provoke random errors in the value of *m* to get $m \pm r$.
 - Using a passive timing attack, we can tell how many loop iterations are done and hence what r was.
 - A usable pair of $m \pm r + 0$ and $m \pm r + 1$ will come along after not too many attempts due to a similar argument as the birthday paradox.
 - Finally, we use the collected results to recover the secret point.
- Boneh-Franklin survives this attack because it doesn't allow the attacker to get direct access to pairing results, other schemes are less secure ...

The Fault Attack (3)

- So far, we side-stepped the problem of reversing the final powering:
 - We assumed we compute $T = R_1/R_2$ but actually we get T^{q^3-1} .
- Lidl and Niederreiter describe a method to compute roots of X^{q³} - T = 0 which they call a q-polynomial.
- We have $X^{q^3-1} T = 0$ so we just multiply by X to get $X^{q^3} TX = 0$.
- Then we just use their text-book method:
 - Write $X = x_0 + \sigma x_1$ and $T = t_0 + \sigma t_1$ with $x_0, x_1, t_0, t_1 \in \mathbb{F}_{q^3}$.
 - The above equation is equivalent to

$$M \cdot X = \left(egin{array}{cc} 1 - t_0 & t_1 \ t_1 & 1 + t_0 \end{array}
ight) \left(egin{array}{cc} x_0 \ x_1 \end{array}
ight) = 0.$$

• The kernel of *M* then provides all solutions to $X^{q^3-1} - R = 0$.

The Fault Attack (4)

- The problem now is that there are q³ 1 possible roots and we want to find one specific root !
- We are saved from failure because factors from the Duursma-Lee algorithm have a sparse form:

$$T = t_0 + t_1 \rho - \rho^2 + t_2 \sigma$$

where there are no $\rho\sigma$ or $\rho^2\sigma$ coefficients.

- From the root finding algorithm we get $T' = c \cdot T$ for some $c \in \mathbb{F}_{q^3}$.
- ► The goal is to compute $d = c^{-1} = T/T'$ and hence *T* which boils down to solving:

$$\left(\begin{array}{cc}t_1' & t_0'+t_1'\\t_2' & t_1'\end{array}\right)\left(\begin{array}{c}d_0\\d_1\end{array}\right)=\left(\begin{array}{c}t_1'+t_2'\\t_0'+t_2'\end{array}\right).$$

The Fault Attack (5)

- All is not lost, we can use bilinearity to try and defend against the attack by denying the attacker knowledge of x₂ and y₂:
 - Pick random integers *a* and *b* so that $a \cdot b = 1 \pmod{\#\mathbb{G}_1}$.
 - Take our *P* and *Q* and compute $P' = a \cdot P$ and $Q' = b \cdot Q$.
 - Now calculate the pairing as:

$$\mathbf{e}(\mathbf{P}',\mathbf{Q}')=\mathbf{e}(\mathbf{a}\cdot\mathbf{P},\mathbf{b}\cdot\mathbf{Q})=\mathbf{e}(\mathbf{P},\mathbf{Q})^{\mathbf{a}\cdot\mathbf{b}}=\mathbf{e}(\mathbf{P},\mathbf{Q}).$$

- The difference is, now the values going into the pairing are randomised: trying to apply the attack yields random stuff rather than the required value.
- Software defences like this are probably preferable to changing the hardware since this is costly and hard to get right.

Conclusion

- This is quite a nice but fairly trivial attack on pairing based cryptography.
 - In reality, unless the protocol is badly designed the attack is probably unrealistic.
- However, this is a new topic and there are plenty of interesting open problems to think about:
 - What happens if P or Q are not on any curve ?
 - What happens if P or Q are not on the expected curve ?
 - What happens if \mathbb{F}_q is faulty ?
 - How can one attack the BKLS algorithm rather than the closed form versions ?
- The pairing is quite resilient to most things we can think of:
 - The final powering mops up dodgy outputs and forces the pairing to be degenerate.
 - Maybe the answer is to attack protocols rather than the pairing itself ...

