
A Fault Attack on Pairing Based Cryptography

Dan Page (Bristol) and Fré Vercauteren (KU Leuven)

FDTC 2005

Dan Page (Bristol) and Fré Vercauteren (KU Leuven)

A Fault Attack on Pairing Based Cryptography Slide 1



Introduction

I Pairing based cryptography is a (fairly) new area:
I Has provided new instantiations of Identity Based Encryption.
I Has provided a wealth of new “hard problems” and proof

techniques.
I Has opened a new area for those interested in implementation.

I Like all new ideas, we want to have a good understanding of
the security properties:

I More and more, such properties include resilience to
side-channel and fault attack.

I In reality, it is just fun to try and break things.

I Our goal here is to start looking at fault attacks on the pairing.
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Pairing Based Cryptography (1)

I For our purposes, the pairing is just a map between groups:

e : G1 ×G1 → G2

where we usually set G1 = E(Fq) and G2 = Fqk .
I The main interesting property of the map is termed bilinearity:

e(a · P, b ·Q) = e(P, Q)a·b

which means we can play about with the exponents at will.
I To work in a useful way, the map also needs to be:

I Non-degenerate, i.e. not all e(P, Q) = 1.
I Computable, i.e. we can evaluate e(P, Q) easily.

I In real applications we generally use the Tate or Weil pairing.
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Pairing Based Cryptography (2)

I Such pairings were originally thought to only be useful in a
destructive setting.

I Boneh-Franklin identity based encryption is perhaps the most
interesting constructive use:

I The trust authority or TA has a public key PTA = s · P for a public
value P and secret value s.

I A users public key is calculated from the string ID using a hash
function as PID = H1(ID).

I A users secret key is calculated by the TA as SID = s · PID.

I To encrypt M, select a random r and compute the tuple:

C = (r · P, M ⊕ H2(e(PID, PTA)r )).

I To decrypt C = (U, V ), we compute the result:

M = V ⊕ H2(e(SID, U)).
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Pairing Based Cryptography (3)

I We are interested in the case where q = 3m and k = 6 since
this is attractive from a parameterisation perspective.

I Along with the standard Miller-style BKLS algorithm, there are
two closed-form algorithms in this case.

I Both compute e(P, Q) with P = (x1, y1) and Q = (x2, y2).

The Duursma-Lee Algorithm

f ← 1
for i = 1 upto m do

x1 ← x3
1

y1 ← y3
1

µ← x1 + x2 + b
λ← −y1y2σ − µ2

g ← λ− µρ− ρ2

f ← f · g

x2 ← x1/3
2

y2 ← y1/3
2

return f q3−1

The Kwon-BGOS Algorithm

f ← 1
x2 ← x3

2
y2 ← y3

2
d ← mb
for i = 1 upto m do

x1 ← x9
1

y1 ← y9
1

µ← x1 + x2 + d
λ← y1y2σ − µ2

g ← λ− µρ− ρ2

f ← f 3 · g
y2 ← −y2
d ← d − b

return f q3−1
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The Fault Attack (1)

I Goal: given the result R = e(P, Q) and knowledge of Q, find P.
I To make things easier, assume we use the Duursma-Lee

algorithm and can reverse the final powering by q3 − 1.
I Let e∆ denote the pairing where we replace the loop bound m

with ∆ so instead of producing the product:
m∏

i=1

[
(−y3i

1 y1/3i−1

2 σ − (x3i

1 + x1/3i−1

2 + b)2)− (x3i

1 + x1/3i−1

2 + b)ρ− ρ2
]

the instead produces:

∆∏
i=1

[
(−y3i

1 y1/3i−1

2 σ − (x3i

1 + x1/3i−1

2 + b)2)− (x3i

1 + x1/3i−1

2 + b)ρ− ρ2
]

I If we can force the device to compute R1 = em±r+0(P, Q) and
R2 = em±r+1(P, Q) by provoking some random error r , then
T = R1/R2 gives just one factor of the product.
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The Fault Attack (2)

I With just one factor, we can extract recover x1 and y1 given
knowledge of x2, y2, r and b:

I We make the target device to lots of pairings and provoke
random errors in the value of m to get m ± r .

I Using a passive timing attack, we can tell how many loop
iterations are done and hence what r was.

I A usable pair of m ± r + 0 and m ± r + 1 will come along after
not too many attempts due to a similar argument as the birthday
paradox.

I Finally, we use the collected results to recover the secret point.

I Boneh-Franklin survives this attack because it doesn’t allow the
attacker to get direct access to pairing results, other schemes
are less secure ...
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The Fault Attack (3)

I So far, we side-stepped the problem of reversing the final
powering:

I We assumed we compute T = R1/R2 but actually we get T q3−1.

I Lidl and Niederreiter describe a method to compute roots of
X q3 − T = 0 which they call a q-polynomial.

I We have X q3−1 − T = 0 so we just multiply by X to get
X q3 − TX = 0.

I Then we just use their text-book method:
I Write X = x0 + σx1 and T = t0 + σt1 with x0, x1, t0, t1 ∈ Fq3 .
I The above equation is equivalent to

M · X =

(
1− t0 t1

t1 1 + t0

) (
x0

x1

)
= 0.

I The kernel of M then provides all solutions to X q3−1 − R = 0.
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The Fault Attack (4)

I The problem now is that there are q3 − 1 possible roots and we
want to find one specific root !

I We are saved from failure because factors from the
Duursma-Lee algorithm have a sparse form:

T = t0 + t1ρ− ρ2 + t2σ

where there are no ρσ or ρ2σ coefficients.
I From the root finding algorithm we get T ′ = c · T for some

c ∈ Fq3 .

I The goal is to compute d = c−1 = T/T ′ and hence T which
boils down to solving:(

t ′1 t ′0 + t ′1
t ′2 t ′1

) (
d0

d1

)
=

(
t ′1 + t ′2
t ′0 + t ′2

)
.
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The Fault Attack (5)

I All is not lost, we can use bilinearity to try and defend against
the attack by denying the attacker knowledge of x2 and y2:

I Pick random integers a and b so that a · b = 1 (mod #G1).
I Take our P and Q and compute P ′ = a · P and Q′ = b ·Q.
I Now calculate the pairing as:

e(P ′, Q′) = e(a · P, b ·Q) = e(P, Q)a·b = e(P, Q).

I The difference is, now the values going into the pairing are
randomised: trying to apply the attack yields random stuff rather
than the required value.

I Software defences like this are probably preferable to changing
the hardware since this is costly and hard to get right.
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Conclusion

I This is quite a nice but fairly trivial attack on pairing based
cryptography.

I In reality, unless the protocol is badly designed the attack is
probably unrealistic.

I However, this is a new topic and there are plenty of interesting
open problems to think about:

I What happens if P or Q are not on any curve ?
I What happens if P or Q are not on the expected curve ?
I What happens if Fq is faulty ?
I How can one attack the BKLS algorithm rather than the closed

form versions ?
I The pairing is quite resilient to most things we can think of:

I The final powering mops up dodgy outputs and forces the pairing
to be degenerate.

I Maybe the answer is to attack protocols rather than the pairing
itself ...
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