

Round Reduction Using Faults

Hamid Choukri, Michael Tunstall

Security Technologies Department (hamid.choukri - michael.tunstall) @gemplus.com

Description

- The objective
 - Break secret keys in very short time.
- The target
 - Secret key algorithms based on a function that is computed iteratively such as the DES (Data Encryption Standard) or the AES (Advanced Encryption Standard).
- The implementation
 - Naïve implementation of AES without counter measures.
- The operating mode
 - A combination of fault attack injection and a cryptanalysis.
 - The fault type is a transient glitch on Vcc (power supply)

Fault configuration

- The chip analysis and tolerance
 - Applied voltage
 - The normal voltage is 5 Volts.
 - The voltage varied from 3 volts to 5 volts.
 - External frequency
 - The normal frequency is 5 MHz
 - The frequency varied from 1 MHz to 5 MHz.
 - Glitch duration.
 - The glitch varied from 1 to 10 clock cycle
- Find optimal configuration for voltage/Frequency/Glitch

Fault Injection Equipment

Fault	Target	RoundFunction:	
ιαμι	larget	call	AddRoundKey
		call	ShiftRows
movlw	0Ah	call	SubBytes
movwf	RoundCounter	call	MixColumns
RoundLabel:	· ************************************	call	KeySchedule
	· · · · · · · · · · · · · · · · · · ·	Sensitive Locations	
call	RoundFunction	•	
decfsz	RoundCounter		
goto	RoundLabel	Decrement Task:	
		RoundCounter <= Rol	undCounter – 1
call	AddRoundKey		
		Testing Task:	
		If (RoudCounter == 0)	
		Status <= 1	
		Else	
		Status <= 0	
		Jump Task:	
		If (Status == 1)	
		<i>PC <= PC1</i>	
		Else	
FDTC - Edinburgh (Scotland), UK, September 2nd		<i>PC <= PC2</i>	GEMPLUS

Processing Localization

- A naive implementation.
- Rounds are visible in the power consumption.

The Fault Target

- A glitch was injected at a number of points where the end of the first round was assumed to be.
- This was done with a card with a known key to be able to detect when a successful fault occurred.
- It is also possible to be done with unknown key, but we will have the check IO time execution and the status returned by the card.

Detecting a Fault (I/O Com)

Results interpretation

• 2 faulty cipher-texts, will be:

```
AddRoundKey();
ShiftRows();
SubBytes();
MixColumns();
AddRoundKey();
```

AddRoundKey(); ShiftRows(); SubBytes(); AddRoundKey();

 Depending on the implementation

Using the Results

- With messages m_1 and m_2 , producing cipher texts c_1 and c_2 .
- Bytewise exhaustive search for k, in equations:

SubBytes $(m_1 \oplus k) \oplus$ SubBytes $(m_2 \oplus k) =$ MixColumn⁻¹ $(c_1 \oplus c_2)$

SubBytes $(m_1 \oplus k) \oplus$ SubBytes $(m_2 \oplus k) = (c_1 \oplus c_2)$

- Each equation will give 2¹⁶ possible hypothesis for k.
- In our case the equation to use was known.
- A wrong fault location injection with a faulty result could be easily removed from the acquired result (P=3.14 x10⁻³⁾.

Other algorithms

- The attack could be applied to other secret key algorithms since the only difference is in the manner in which the result is exploited.
- As example, the DES reduction to one round give a key-space of 2²⁴ to be searched from one corrupt ciphertext.

Counter measures

- Redundancy check of RoundCounter.
- Repeat all or part of the algorithm.
- Add Random delay so that it is difficult to find the correct position.
- Microcontroller with glitch sensor.

• . . .

Conclusion

- The round reduction is experimentally possible in presence of naïve implementation and without hardware counter measures.
- The attack requires a high degree of control with regard to where the fault take place but relatively little calculation after acquiring the desired corrupt cipher-texts.
- Other fault attacks are possible exploiting the mathematical properties but needs more complex post-treatment.

Thank you

Contacts:

hamid.choukri@gemplus.com

michael.tunstall@gemplus.com or m.j.tunstall@rhul.ac.uk