Non-linear Residue Codes for Robust Public-Key Arithmetic

Joint work with Gunnar Gaubatz WPI, and Mark Karpovsky Boston University

9/10/2006

Berk Sunar Worcester Polytechnic Institute and Visiting Researcher, Ruhr-Universitat Bochum

CRIS Lab: http://crypto.wpi.edu

Motivation

- Boneh 1996: Via fault induction during CRT-inversion step of RSA reveals modulus factors with one simple GCD computation
- Fault induction may be facilitated to make a cryptographic IC leak secret information
- "Bellcore"-style active attacks
- Many unsubstantiated claims

Even More Motivation..

- Power balanced logic cell libraries are used to reduce the correlation between data and sidechannel leakage.
- Power consumption and hence electro-magnetic emanations are data-independent, eliminates possibility of passive attacks.
- Workaround
 - The attacker induces a fault imbalancing the power consumption,
 - A classical side-channel attack follows.

3

Past Solutions

- Need fault detection network build right into IC.
- Previous proposals were limited to simple parity checks
- Possible solution: Linear arithmetic codes borrowed from communication theory.
 - Low overhead (<50%)
 - Assumes attacker has little control over error patterns
- Problem: There exists error vectors for which all codewords will jump to another codeword.
- Using one of these error vectors the attacker will have a high chance inserting an error that will go undetected.

A Strong Error Model

- Proposed by Karpovsky et al in FDTC 2005
- Assumptions:
 - The attacker can introduce an arbitrary number of flips in the data vectors. (has control over the weight of the error vectors).
 - Attacker may not read, compute and write on the fly. (low temporal resolution)
- Linear codes can't withstand assump. 1
- Need error checks that are data dependent.

The Error Model (cont.)

Use code function f(x) to define code

C={ (x,w) | w=f(x) }

and metric

```
Q(e)=|\{x| f(x+e_x)=f(x)+e_w, e \supset 0\}| / |C|
```

- The attacker has only chance max{Q(e)} to insert a error which will go undetected.
- In other words, the expected number of trial an attacker has to make to implement a successful attack is at least $\frac{1}{2}$ 1/max{Q(e)}.
- We want Q(e) to be bounded and very small for all possible e, e.g. $Q(e) < 2^{-32}$.
- The probability Q(e) of an undetected error e does not only depend on the error pattern, but also on the data itself.

6

A Specific Construction by Karpovsky

- Assume we are given a q-ary (q>2) linear code V(n,k) with check matrix H=[P|I] with rank(P)=n-k.
- Form the *non-linear* code

 $C_V = \{ (x,w) \mid x \in GF(q^k), w = (xG)^2 \in GF(q^r) \}.$

- Then
 - $q^{k}-q^{k-r}$ errors are detected with Q(e)=0 and
 - q^n-q^k errors are detected with Q(e)= q^{-r}
- There is a similar construction for the binary char.

Practical Issues

- The non-linearity makes it difficult to implement EDN throughout the IC.
- Input /output operands in cryptographic functions rarely have such nice structures, e.g. GF(p^k) or GF((2ⁿ)^m).
- Need a technique to protect arbitary datapaths (16/32/64 bits) with support for basic arithmetic operations, +/-, shifts and mul.
- End result would be protected Montgomery or Barret reduction circuits and hence protected RSA, D-H, ECC etc. designs.

A New Robust Code

• Definition: Let

 $C = \{ (x,w) \mid w = f(x) \in GF(p) , x \in \mathbb{Z}_{2^{k}} \}.$ where $f : \mathbb{Z}_{2^{k}} \rightarrow GF(p)$ and $r = \log_{2}(p)$ is defined as $f(x)=x^{2} \mod p=|x^{2}|_{p}$.

- Theorem: C is robust if and only if r=k and 2^k -p < σ where

 $max{Q(e)} \le \sigma 2^{-r}$

9

A Tight Bound on σ

• Theorem: Given the robust residue code C as before, the error check equation

 $(x+e_x \mod 2^k)^2 \mod p = w+e_w \mod 2^k$

there are at most 2^{k} -p+1 solutions for errors of the form e=(p,0) or e=(2^{k} -p,0) and 4 solutions for all other error patterns. Hence for e \supset 0

 $max{Q(e)} \le 2^{-k} max{4, 2^{k}-p+1}$

10

Practical Values

к	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
2 ^к –р	1	5	1	3	9	3	15	3	39	5	39	57	3	35	1	5
к	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
2 ^к –р	9	41	31	5	25	45	7	87	21	11	57	17	55	21	115	59
k	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
2 ^k –p	81	27	129	47	111	33	55	5	13	27	55	93	1	57	25	59

Robust coding of an arbitrary datapath

A typical datapath contains computational elements and routing elements commanded by the control logic

- Datapath width is increased to accommodate check bits
- Routing elements are not touched
- Computational elements are replaced with robust versions.
 - Need robust versions of common components
- Implement error checking/handling network
 - Self-checking checkers
 - Disable after countdown expires

12

Robust Addition

- Assume error check on operands a and b are available, e.g. $|a^2|_p$, and $|b^2|_p$.
- Need to implement *predicted* error check from existing error checks |a²|_p, and |b²|_p:

$$|c^{2}|_{p} = |(a+b+c_{in})^{2}|_{p}$$

= $||a^{2}|_{p}+|b^{2}|_{p}+ 2(ab+c_{in}(a+b))+c_{in}|_{p}$

• Compare against *actual* check

$$|c^{2}|_{p}^{*} = |(c_{h}^{2k}+c_{l}^{2})|_{p} = |c_{h}^{2k}+c_{l}^{2k}+c_{l}^{2k}+c_{l}^{2}|_{p}|_{p}$$

13

Robust Addition RADDC

Robust Multiplication

- Given $(a, |a^2|_p)$ and $(b, |b^2|_p)$ the predicted value of the checksum is simply $|c^2|_p = |a^2|_p |b^2|_p$
- We compute the actual checksum of c=ab=c_h2^k+c_l as follows

$$|c^{2}|_{p}^{*} = |(c_{h}^{2}|_{p}^{k}+c_{l}^{2})|_{p}$$

= $||c_{h}^{2}|_{p}|2^{2k}|_{p}^{k}+|c_{h}^{2}|_{p}|c_{l}^{2}|_{p}|2^{k+1}|_{p}^{k}+|c_{l}^{2}|_{p}|_{p}$

- The values $|2^{2k}|_p$ and $|2^{k+1}|_p$ are constant.
- $|c_h^2|_p$ and $|c_l^2|_p$ are intermediary values of the computation which are also forwarded to the next stage of the datapath.

Robust Multiplication RMUL

Worcester Polytechnic Institute

Montgomery Multiplication

Algorithm 1 k-bit Digit-Serial FIOS Montgomery MultiplicationRequire: $d = \{0, \ldots, 0\}, M'_0 = -M_0^{-1} \mod 2^k$ 1: for j = 0 to e - 1 do2: $(C, S) \in aob_j + d_0$ 3: $U \in SM'_0 \mod 2^k$ 4: $(C, S) \in (C, S) + M_0U$ 5: for i = 1 to e - 1 do6: $(C, d_{i-1}) \in C + a_ib_j + M_iU + d_i$ 7: end for8: $(d_e, d_{e-1}) \in C$ 9: end for

17

Robust Montgomery Multiplication

Algorithm 2 Robust Montgomery Multiplication

Require: $d = \{(0, 0), \dots, (0, 0)\}, M'_0 = -M_0^{-1} \mod 2^k$ 1: for i = 0 to e - 1 do if $\operatorname{Check}((a_0, |a_0^2|_p), (b_j, |b_i^2|_p), (d_0, |d_0^2|_p), (M_0', |(M_0')^2|_p), (M_0, |M_0^2|_p))$ then 2: $((T_1, |T_1^2|_p), (T_0, |T_0^2|_p)) \leftarrow \text{RMUL}((a_0, |a_0^2|_p), (b_i, |b_i^2|_p))$ 3: 4: $(T_0, |T_0^2|_{\mathbb{P}}) \leftarrow \operatorname{RADD}((T_0, |T_0^2|_{\mathbb{P}}), (d_0, |d_0^2|_{\mathbb{P}}))$ $(T_1, |T_1^2|_p) \Leftrightarrow \text{RADDC}((T_1, |T_1^2|_p), (0, 0))$ 5: $((-,-), (U, |U^2|_p)) \Leftrightarrow \mathrm{RMUL}((T_0, |T_0^2|_p), (M'_0, |M'_0^2|_p))$ 6: $((T_3, |T_3^2|_p), (T_2, |T_2^2|_p)) \Leftrightarrow \text{RMUL}((M_0, |M_0^2|_p), (U, |U^2|_p))$ 7: $(-,-) \Leftarrow \text{RADD}((T_0, |T_0^2|_p), (T_2, |T_2^2|_p))$ 8: $(T_0, |T_0^2|_p) \Leftrightarrow \text{RADDC}((T_1, |T_1^2|_p), (T_3, |T_3^2|_p))$ 9: $(T_1, |T_1^2|_p) \Leftrightarrow (\operatorname{carry}, \operatorname{carry})$ 10:for i = 1 to e - 1 do 11:if $\operatorname{Check}((a_i, |a_i^2|_p), (b_j, |b_j^2|_p), (d_i, |d_i^2|_p), (U, |U^2|_p), (M_i, |M_i^2|_p))$ then 12: $(T_0, |T_0^2|_p) \Leftrightarrow \operatorname{RADD}((T_0, |T_0^2|_p), (d_i, |d_i^2|_p))$ 13: $(T_1, |T_1^2|_p) \Leftrightarrow \text{RADDC}((T_1, |T_1^2|_p), (0, 0))$ 14: $((T_4, |T_4^2|_p), (T_3, |T_3^2|_p)) \Leftrightarrow \text{RMUL}((a_i, |a_i^2|_p), (b_i, |b_i^2|_p))$ 15: $(T_0, |T_0^2|_p) \Leftrightarrow \text{RADD}((T_0, |T_0^2|_p), (T_3, |T_3^2|_p))$ 16: $(T_1, |T_1^2|_p) \Leftrightarrow \operatorname{RADDC}((T_1, |T_1^2|_p), (T_3, |T_3^2|_p))$ 17: $(T_2, |T_2^2|_p) \Leftrightarrow (\text{carry}, \text{carry})$ 18: $((T_4, |T_4^2|_p), (T_3, |T_3^2|_p)) \Leftrightarrow \mathrm{RMUL}((M_i, |M_i^2|_p), (U, |U^2|_p))$ 19: $(d_{i-1}, |d_{i-1}^2|_p) \Leftrightarrow \text{RADD}((T_0, |T_0^2|_p), (T_3, |T_3^2|_p))$ 20: $(T_0, |T_0^2|_p) \leftarrow \text{RADDC}((T_1, |T_1^2|_p), (T_3, |T_3^2|_p))$ 21:22: $(T_1, |T_1^2|_p) \Leftrightarrow (\operatorname{carry}, \operatorname{carry})$ 23:else24:ABORT 25:end if 26:end for 27: $(d_{\epsilon-1}, |d_{\epsilon-1}^2|_{\mathfrak{p}}) \Leftarrow (T_0, |T_0^2|_{\mathfrak{p}})$ $(d_{\epsilon}, |d_{\epsilon}^2|_p) \Leftarrow (T_1, |T_1^2|_p)$ 28:29:elseABORT 30:31:end if 32: end for

WPI

18

Performance Degradation

- Area (including check)
 - A_{RADDC} = 2 A_{MUL} + 4 A_{ADD}
 - $A_{\rm RMUL} = 3 A_{\rm MUL} + 3 A_{\rm ADD}$
 - Both figures may be improved by coarse grain error checking
- Critical Path delay:
 - $T_{RADDC} = 1 T_{MUL} + 1 T_{ADD}$
 - $-T_{RMUL} = 2T_{MUL}$
- Montgomery multiplication
 - ~3 times larger
 - ~2 times slower

19

Conclusion

- Further progress on new error model
- A new non-linear robust code and associated error detection scheme
- High degree of versatility (RSA, DH, ECC etc.)
- Quantifiable resilience against fault induction attacks of high precision
- Performance cost is high but can be mitigated by building specialized EDNs

Questions?

Thanks!

21