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Motivation
• Boneh 1996: Via fault induction during 

CRT-inversion step of RSA reveals 
modulus factors with one simple GCD 
computation

• Fault induction may be facilitated to 
make a cryptographic IC leak secret 
information

• “Bellcore”-style active attacks
• Many unsubstantiated claims
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Even More Motivation..

• Power balanced logic cell libraries are used to 
reduce the correlation between data and side-
channel leakage.

• Power consumption and hence electro-magnetic 
emanations are data-independent, eliminates 
possibility of passive attacks.

• Workaround
– The attacker induces a fault imbalancing the power 

consumption,
– A classical side-channel attack follows.



Worcester Polytechnic Institute

4

Past Solutions
• Need fault detection network build right into IC.
• Previous proposals were limited to simple parity 

checks 
• Possible solution: Linear arithmetic codes 

borrowed from communication theory.
– Low overhead (<50%)
– Assumes attacker has little control over error patterns

• Problem: There exists error vectors for which all
codewords will jump to another codeword.

• Using one of these error vectors the attacker will 
have a high chance inserting an error that will go 
undetected.
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A Strong Error Model
• Proposed by Karpovsky et al in FDTC 2005
• Assumptions:

– The attacker can introduce an arbitrary number 
of flips in the data vectors. (has control over 
the weight of the error vectors).

– Attacker may not read, compute and write on 
the fly. (low temporal resolution)

• Linear codes can’t withstand assump. 1
• Need error checks that are data 

dependent.
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The Error Model (cont.)
• Use code function f(x) to define code

C={ (x,w) | w=f(x) } 

and metric
Q(e)=|{x| f(x+ex)=f(x)+ew, e 0}| / |C|

• The attacker has only chance max{Q(e)} to insert a error 
which will go undetected.

• In other words, the expected number of trial an attacker 
has to make to implement a successful attack is at least ½ 
1/max{Q(e)}.

• We want Q(e) to be bounded and very small for all possible 
e, e.g. Q(e) < 2-32.

• The probability Q(e) of an undetected error e does not only 
depend on the error pattern, but also on the data itself.
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A Specific Construction by 
Karpovsky

• Assume we are given a q-ary (q>2) linear code V(n,k) 
with check matrix H=[P|I] with rank(P)=n-k.

• Form the non-linear code
CV = { (x,w) | x ∈ GF(qk), w =(xG)2 ∈ GF(qr) }.

• Then 
– qk-qk-r errors are detected with Q(e)=0 and
– qn-qk errors are detected with Q(e)=q-r

• There is a similar construction for the binary char.



Worcester Polytechnic Institute

8

Practical Issues
• The non-linearity makes it difficult to implement 

EDN throughout the IC.
• Input /output operands in cryptographic functions 

rarely have such nice structures, e.g. GF(pk) or 
GF((2n)m).

• Need a technique to protect arbitary datapaths
(16/32/64 bits) with support for basic arithmetic 
operations, +/-, shifts and mul.

• End result would be protected Montgomery or 
Barret reduction circuits and hence protected 
RSA, D-H, ECC etc. designs.
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A New Robust Code

• Definition: Let 
C = { (x,w) | w =f(x)∈ GF(p) , x ∈ Z2

k }.
where f : Z2

k GF(p) and r =log2(p) is 
defined as f(x)=x2 mod p=|x2|p.

• Theorem: C is robust if and only if r=k and 
2k –p < σ where 

max{Q(e)} ≤ σ 2-r
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A Tight Bound on σ

• Theorem: Given the robust residue code C as 
before, the error check equation 

(x+ex mod 2k)2 mod p = w+ew mod 2k

there are at most 2k–p+1 solutions for errors of 
the form e=(p,0) or e=(2k–p,0) and 4 solutions for 
all other error patterns. Hence for e 0

max{Q(e)} ≤ 2-k max{4, 2k–p+1}
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Practical Values
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Robust coding of an arbitrary 
datapath

• Datapath width is increased to accommodate 
check bits

• Routing elements are not touched
• Computational elements are replaced with 

robust versions.
– Need robust versions of common components

• Implement error checking/handling network
– Self-checking checkers
– Disable after countdown expires

A typical datapath contains computational elements and 
routing elements commanded by the control logic
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Robust Addition
• Assume error check on operands a and b are available, e.g. 

|a2|p, and |b2|p .
• Need to implement predicted error check from existing 

error checks |a2|p, and |b2|p :  

|c2|p = |(a+b+cin)2|p     
= ||a2|p+|b2|p+ 2(ab+cin(a+b))+cin|p

• Compare against actual check

|c2|p* = |(ch2k+cl)2|p = |ch |22k+cl2k+1|p +|cl
2|p|p
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Robust Multiplication

• Given (a, |a2|p) and (b, |b2|p) the predicted value of 
the checksum is simply |c2|p =|a2|p |b2|p

• We compute the actual checksum of c=ab=ch2k+cl
as follows

|c2|p* = |(ch2k+cl)2|p

= ||ch
2|p |22k|p+ |ch

2|p|cl
2|p |2k+1|p +|cl

2|p |p

• The values |22k|p and |2k+1|p are constant.
• |ch

2|p and |cl
2|p are intermediary values of the 

computation which are also forwarded to the next 
stage of the datapath.
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Robust Multiplication RMUL
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Montgomery Multiplication
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Robust Montgomery Multiplication
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Performance Degradation
• Area (including check)

– ARADDC = 2 AMUL + 4 AADD
– ARMUL    = 3 AMUL+ 3 AADD
– Both figures may be improved by coarse grain 

error checking
• Critical Path delay:

– TRADDC = 1 TMUL + 1 TADD
– TRMUL    = 2 TMUL

• Montgomery multiplication
– ~3 times larger
– ~2 times slower
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Conclusion

• Further progress on new error model
• A new non-linear robust code and 

associated error detection scheme
• High degree of versatility (RSA, DH, ECC 

etc.)
• Quantifiable resilience against fault 

induction attacks of high precision
• Performance cost is high but can be 

mitigated by building specialized EDNs
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Questions?

Thanks!


