R‘l:l'!.'-i'll HI;'|1 I”‘I'!'H:i'
Undversity of London

Frederic Amiel,
Christophe Clavier
& Michael Tunstall

Collision Fault Analysis

+ In an attack was proposed against a hardware AES [Blomer
and Seifert, 2003].

+ If one bit of the first XOR is set to zero (using a fault) and the
ciphertext compared a normal execution.
= If the ciphertexts are the same then the bit was zero.
= If the ciphertexts are different then the bit was one.

+ Can find the Key in 128 faults ... but requires a high degree of
precision.

+ We attempted a bytewise version of this on an 8-bit
microcontroller.

= Setting a byte to zero and searching for a message block that would
produce this ciphertext.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

Fault Injection Equipment: CLIO Glitch Injector

Fault Injection Equipment: Flash

__

? ' \.\\\.\

Fault Injection Equipment: Laser

Rn'!,‘ill HL‘I] Iﬂ“'ﬂ}"
Undveesity of London

Collision Fault Analysis

+ All of the attack methods were unsuccessful in producing the
desired effect.

+ Previously, have been able to use faults to break open loops.

+ Allows the key loading loop to be broken to gradually reduce
the key [Biham and Shamir, 1997]

Input|AES Kev Output
M—| Kop= XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX| — (%
M—| Ki= XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 00| — C
M—| Ko= XX XX XX XX XX XX XX XX XX XX XX XX XX XX 00 00| — C
M—| K;= XX XX XX XX XX XX XX XX XX XX XX XX XX 00 00 0Q| — C

M—| Kis= XX XX 00 00 00 00 00 00 00 00 00 00 00 00 00 00| — (14
M —| Kis= XX 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00| — C'i5

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

Collision Fault Analysis

+ Were able to produce this with a glitch.

+ Scanning the whole loop (127 faulty ciphertexts), we found the keys:
00000000000000000000000000000000
FEOOO000000000000000000000000000
FEDCOO000000000000000000000000000
FEDCBAOO000000000000000000000000
FEDCBA98000000000000000000000000

FEDCBA98765432100123456789000000
FEDCBA98765432100123456789ABCDEF
FEDCBA98765432100123456789ABCD0O0O
FEDCBA98765432100123456789ABCDCD
FEDCBA98765432100123456789AB0000
FEDCBA98765432100123456789ABO0OEF
FEDCBA98765432100123456789AB0O0AB
FEDCBA98765432100123456789ABEFO0
FEDCBA98765432100123456789AB5300

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

DPA-Resistant Algorithms

+ Statistical analysis of
small differences in
power consumption to
predict intermediate
states.

DPA-Resistant Algorithms

+ All data is masked by XORing each byte with a random R.
+ S-boxes therefore need to be constructed in RAM.

Algorithm 4: Randomising S-Box Values

Input: S = (so0, 51, 82, ..., 5,). containing the s-box, R a random € [0, n], and r a
random € [0,).
Output: RS = (rsg, rs1,7S2,...,75,), containing the randomised s-box.

fori — Oton do
rS; «— Sigr) DT
end

return RS

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on a DPA-Resistant Algorithm

+ Reconsider the first XOR with the key.

+ Two bytes are changed, although each byte of the message and key
Is masked with a Random:

M 0-7 ® Rl M 8-15 ® Rl M112—119 ® R1 M120—128 ® R1
Ko_7) Rz ;CJ Keis @R, ><) ——= K 116®R, ;f\ K120—128 ® Rz ’()
Fault

+ Fault on two bytes to a fixed values (to zero for example).
+ Gives (in memory):

MeoKasR| MaoKasR|...| Mo KR\ MasKE-R|[0]0
+ In algorithm:
M-KNK|M-K|...|M-K|M-K|R|R

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on a DPA-Resistant Algorithm

+ In our case with one fault we can break the for loop, two bytes
too early.

For (1=0; 1<16; 1++)
{

acAESwork[1] = acAESdata[i1] ™ acAESkey[i];
s

+ Assuming key and data are already masked. acAESwork will be its
non-initialised state (zero if we are lucky).

+ By collision we can find K112_119 & R1 & Rs and
Ki20—128 ©® Ry & Ry

+ We therefore know {19119 & K120_198

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on a DPA-Resistant Algorithm

4+ DPA countermeasures include a random order.

+Assuming key and data are already masked, acAESwork will be its
non-initialised state (zero if we are lucky).

+Gives
(19) - 0

different combinations.

+ A key-dependent dictionary of 223 entries can be constructed for this
(350 Mb) i.e. dictionary needs to be constructed with device under
attack — one week using a smart card).

+Can use a fragment of the dictionary, and acquire more data.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on a DPA-Resistant Algorithm

+ This gives pairs of masked values (with different randoms) at
different indexes.

+ For example:

- - Aijo—ie IR Nion_1os 0 R
I{-_li_i—]l’lii R —]\llﬂ—ll'_l LR .

4+ To convert the mask:

= R$P R

é ~ I y 7 ~
Kog_103 B R &M= Kogs_103 B R

+ With enough samples the whole key (masked with R) can be found,
leaving an exhaustive search of 28 different keys.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on a DPA-Resistant Algorithm

+ Scanning the loop found 71 pairs of key bytes, e.g.

—---B2--D4----------- - o — -
+ Giving 31 different keys I.e. no XOR difference.
+ Leading to a search of approx. 212 different keys,

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on key masking

+ Keys are often stored in non-volatile memory XORed with a
(unchanging) random of the same bit length as the key.

+ This random needs to be replaced with R before the DPA-resistant
algorthm can be called.

+ A different attack can be applied to this mechanism.

K0,7 S KMoq K8—15 ® KM8—15 K112_119 ® KM112-119 K120—128 D KM1207128
R—— R mmomes R— " R——("
KMo ———15 KM,

KM, 15110 —>€; KM 50128 —’é;

Fault

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on key masking

+ Fault on two byte too a fixed value (zero for example).
+ Gives (in memory):

N -R[OJTO]JTO]JO]JO[O[O[OLTO]JTO]JO]LTO[O][O]O ‘

+ In algorithm:
KBHBB‘RRRB[{RRB‘RRB‘

+ A dictionary of the 216 combinations of K and R can be created.

+ As before, the random order means that a random byte will be
transfered correctly.

+ Key-independent dictionary size of 220 (40 MB).

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

CFA on key masking

+ Attacking this loop produced 60 collisions e.g.

Ciphertext Index Key Byte
F81E9C53601A9D27BF14A439CFB89329 13 CC
9589F701F254450A95BOSACE3F56CC525 8 777
D5B7691596141F967B8933B3EC19D80E 5 44
FA88725F36EED9ASSDA1IBC318861F1CA 5 44
OCA8BF1D394DA73B5DB36C03C6F19540 16 FF
7ED1484607BBCF135F90B460DADA1FCD 4 33
A1EDC486CAD6C32EA1I6DE3CFEFDD309201 4 33
OCA8BF1D394DA73B5DB36C03C6F19540 16 FE
B2C5E49D5B5AE03478A06D7212151870 16 FF
96FA183C668222C6094A5D5D2791F489 1 FA

+ Found the key instantly as there was no contradictory information.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

Fault Injection during S-Box Construction

+ DPA resistant DES constructs S-Boxes in RAM.

SR

s eas]?!

Fault Injection during S-Box Construction

+ The elements written can be changed.

+ Then we can say:
= Element used if ciphertext is corrupt.
= Otherwise element is not used.

+ We can then construct hypothesis’ on the first subkey.

= e.g. If the first element of the first S-Box is corrupt and produces a corrupt
ciphertext, then the first six bits of the key could be.

i SR K,.=0OM,.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

Fault Injection during S-Box Construction

+ Changing S-Box values one by one a list of hypotheses can be
constructed on the first subkey (for example).

+ Repeating with a different message leads to a different list of
hypotheses.

+ The actual subkey is in the intersection of the two lists

+ Attack tools for target chip.

= Using duty cycle bug to change RAM writing. Found while trying to
implement Differential Fault Analysis on the target chip.

= Tools designed to exploit this bug found a DES key in approx. 45 minutes.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

Countermeasures

4+ Construct S-boxes in arandom order:

T D jii

OR|

Fault Injection during S-Box Construction

+ In the case where S-Box creation is randomised, can use
Differential Fault Analysis [Biham and Shamir, 1997] to attack
DES.

+ If a random S-Box values is changed the probability that this
value is used in the fifteenth round is (63)" L — (9123,

+ In the DES anti-DPA two values are changed (compressed S-

box), leading to probability - (%)15 E'.L (?)15 — 0.0192
- J 4 4 . w -

+ False positives do occur but merely add noise.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

P-Perm-1(R15)

e837cd41

e8371d41
e837cd31
e837cdal
e837ad41
eb37cd41
e937cd41
e837cd31
0837cd41
e8a7cd41l
d837cd41

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

Simulated Example

Ciphertext

6Tb23ead0534752b

6eb63ead55b0753d
7b3276ac2024302b
79a776ec2124743b
6eb21ead51307429
6Tb32ead0534fd2e
6fb22ead05347d2a
7b3276ac2024302b
6fa82eec45616422
67f2babc0530312b
6fa83eec4521752b

Correct Ciphertext

\

> Faulty Ciphertexts

Results

+ Implementation with randomised S-Boxes takes 8 minutes.

+ Implementation with all anti-DPA countermeasures takes 20
minutes.
= Random Delays.
= Random Order.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

Countermeasures

+ S-box construction requires a checksum (at least 16 bits), as if
more than one S-box element is changed, an x-bit checksum
will be correct with probability 1/x.

+ Repeating the initial functions, (only the rounds of an algorithm
need to be repeated to prevent DFA).

+ Initialise “work” areas of memory with random values, each byte
needs to be different. Using an LFSR may be risky if the
algorithm is known — just adds complexity.

IRD'!,-'HI Hl.'l] Ii!l"h'ﬂ‘r"

Undveesity of London

