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Collision Fault Analysis

In an attack was proposed against a hardware AES [Blomer
and Seifert, 2003].
If one bit of the first XOR is set to zero (using a fault) and the 
ciphertext compared a normal execution.

If the ciphertexts are the same then the bit was zero.
If the ciphertexts are different then the bit was one.

Can find the Key in 128 faults … but requires a high degree of 
precision.

We attempted a bytewise version of this on an 8-bit 
microcontroller.

Setting a byte to zero and searching for a message block that would 
produce this ciphertext.



Fault Injection Equipment: CLIO Glitch Injector



Fault Injection Equipment: Flash



Fault Injection Equipment: Laser



Collision Fault Analysis

All of the attack methods were unsuccessful in producing the 
desired effect.

Previously, have been able to use faults to break open loops.
Allows the key loading loop to be broken to gradually reduce 
the key [Biham and Shamir, 1997]



Collision Fault Analysis
Were able to produce this with a glitch.
Scanning the whole loop (127 faulty ciphertexts), we found the keys:

00000000000000000000000000000000 
FE000000000000000000000000000000 
FEDC0000000000000000000000000000 
FEDCBA00000000000000000000000000 
FEDCBA98000000000000000000000000 

...
FEDCBA98765432100123456789000000 
FEDCBA98765432100123456789ABCDEF
FEDCBA98765432100123456789ABCD00 
FEDCBA98765432100123456789ABCDCD 
FEDCBA98765432100123456789AB0000 
FEDCBA98765432100123456789AB00EF 
FEDCBA98765432100123456789AB00AB 
FEDCBA98765432100123456789ABEF00 
FEDCBA98765432100123456789AB5300



DPA-Resistant Algorithms

Statistical analysis of 
small differences in 
power consumption to 
predict intermediate 
states.



DPA-Resistant Algorithms

All data is masked by XORing each byte with a random R.
S-boxes therefore need to be constructed in RAM.



CFA on a DPA-Resistant Algorithm
Reconsider the first XOR with the key.
Two bytes are changed, although each byte of the message and key
is masked with a Random:

1158 RM ⊕−170 RM ⊕− 1119112 RM ⊕− 1128120 RM ⊕−

270 RK ⊕− 2158 RK ⊕− 2119112 RK ⊕− 2128120 RK ⊕−

Fault
Fault on two bytes to a fixed values (to zero for example).
Gives (in memory):

In algorithm:



CFA on a DPA-Resistant Algorithm

In our case with one fault we can break the for loop, two bytes 
too early.

For (i=0; i<16; i++)
{

acAESwork[i] = acAESdata[i] ^ acAESkey[i];
}

Assuming key and data are already masked. acAESwork will be its
non-initialised state (zero if we are lucky).
By collision we can find                                                and

We therefore know 



CFA on a DPA-Resistant Algorithm

DPA countermeasures include a random order.

Assuming key and data are already masked, acAESwork will be its
non-initialised state (zero if we are lucky).
Gives 

different combinations.

A key-dependent dictionary of 223 entries can be constructed for this
(350 Mb) i.e. dictionary needs to be constructed with device under 
attack – one week using a smart card).

Can use a fragment of the dictionary, and acquire more data.



CFA on a DPA-Resistant Algorithm

This gives pairs of masked values (with different randoms) at
different indexes.
For example:

To convert the mask:

With enough samples the whole key (masked with R) can be found, 
leaving an exhaustive search of 28 different keys.



CFA on a DPA-Resistant Algorithm

Scanning the loop found 71 pairs of key bytes, e.g.
F11A----------------------------

00------00----------------------

8E--------21--------------------

00--------88--------------------

5B----------C7------------------

24------------A9----------------

00------------88----------------

--B4----------D2----------------

--06------------9F--------------

--B6--------------------6B------

----7F6E------------------------

----B2--D4----------------------

Giving 31 different keys I.e. no XOR difference.
Leading to a search of approx. 212 different keys,



CFA on key masking

Keys are often stored in non-volatile memory XORed with a 
(unchanging) random of the same bit length as the key.
This random needs to be replaced with R before the DPA-resistant 
algorthm can be called.
A different attack can be applied to this mechanism.

Fault

7070 −− ⊕KMK 158158 −− ⊕ KMK
119112119112 −− ⊕ KMK 128120128120 −− ⊕ KMK

RRRR

70−KM
158−KM 119112−KM 128120−KM



CFA on key masking
Fault on two byte too a fixed value (zero for example).
Gives (in memory):

In algorithm:

A dictionary of the 216 combinations of K and R can be created. 

As before, the random order means that a random byte will be
transfered correctly.

Key-independent dictionary size of 220 (40 MB).



CFA on key masking

Attacking this loop produced 60 collisions e.g.
Ciphertext                             Index Key Byte

F81E9C53601A9D27BF14A439CFB89329     13     CC

9589F701F254450A95B9ACE3F56CC525 8 77

D5B7691596141F967B8933B3EC19D80E 5     44

FA88725F36EED9A99DA1BC318861F1CA 5 44

0CA8BF1D394DA73B5DB36C03C6F19540 16 FF

7ED1484607BBCF135F90B460DADA1FCD 4     33

A1EDC486CAD6C32EA16DE3CFDD309201 4     33

0CA8BF1D394DA73B5DB36C03C6F19540 16 FF

B2C5E49D5B5AE03478A06D7212151870 16     FF

96FA183C668222C6094A5D5D2791F489 1 FA

Found the key instantly as there was no contradictory information.



Fault Injection during S-Box Construction

DPA resistant DES constructs S-Boxes in RAM.



Fault Injection during S-Box Construction

The elements written can be changed.
Then we can say:

Element used if ciphertext is corrupt.
Otherwise element is not used.

We can then construct hypothesis’ on the first subkey.
e.g. If the first element of the first S-Box is corrupt and produces a corrupt 
ciphertext, then the first six bits of the key could be.

5050 0 −− ⊕= MK



Fault Injection during S-Box Construction

Changing S-Box values one by one a list of hypotheses can be 
constructed on the first subkey (for example).
Repeating with a different message leads to a different list of 
hypotheses.
The actual subkey is in the intersection of the two lists

Attack tools for target chip.
Using duty cycle bug to change RAM writing. Found while trying to 
implement Differential Fault Analysis on the target chip.
Tools designed to exploit this bug found a DES key in approx. 45 minutes.



Countermeasures

Construct S-boxes in a random order:



Fault Injection during S-Box Construction

In the case where S-Box creation is randomised, can use 
Differential Fault Analysis [Biham and Shamir, 1997] to attack 
DES.

If a random S-Box values is changed the probability that this 
value is used in the fifteenth round is

In the DES anti-DPA two values are changed (compressed S-
box), leading to probability

False positives do occur but merely add noise.



Simulated Example

e837cd41 -> 6fb23ead0534752b

e837fd41 -> 6eb63ead55b0753d
e837cd31 -> 7b3276ac2024302b
e837cda1 -> 79a776ec2124743b
e837ad41 -> 6eb21ead51307429
eb37cd41 -> 6fb32ead0534fd2e
e937cd41 -> 6fb22ead05347d2a
e837cd31 -> 7b3276ac2024302b
9837cd41 -> 6fa82eec45616422
e8a7cd41 -> 67f2babc0530312b
d837cd41 -> 6fa83eec4521752b

CiphertextP-Perm-1(R15)

Correct Ciphertext

Faulty Ciphertexts



Results

Implementation with randomised S-Boxes takes 8 minutes.
Implementation with all anti-DPA countermeasures takes 20 
minutes.

Random Delays.
Random Order.



Countermeasures

S-box construction requires a checksum (at least 16 bits), as if 
more than one S-box element is changed, an x-bit checksum 
will be correct with probability 1/x.

Repeating the initial functions, (only the rounds of an algorithm 
need to be repeated to prevent DFA).

Initialise “work” areas of memory with random values, each byte 
needs to be different. Using an LFSR may be risky if the 
algorithm is known – just adds complexity. 


