
Java Type Confusion
and
Fault Attacks

Olli Vertanen
University of Kuopio

Finland

FTDC 2006 Workshop
Pacifico Yokohama
October 10, 2006

About the Presentation

• What is this?
– Some observations about the Java bytecode,

Java virtual machine and design of fault attacks.
• Programming language view - not directly

cryptography related.
• Emphasis on the embedded systems - also secure

devices e.g. smart cards.

The Problem

Can we design fault attacks at the Java bytecode
level that cause type confusion situations?

Type Confusion, ...

• Type confusion is, in effect, an illegal type cast:

• Java should be a type safe language, but many
known Java exploits are based on type confusion.

• The verifier (a part of the Java virtual machine,
JVM) plays crucial role in maintaining type safety.

int illegalCast(Object ref)
{

return ref;
}

... Java,

compile load link execute

Java Virtual Machine

time

1. Verification takes place during
the linkage phase.

2. Executed bytecode is presumed to be verified.

1. & 2. BUT: What if verified programs are modified?
Does the time cap introduce a vulnerability?

TOCTOU: “Time Of
Check, Time Of Use”

Java bytecode

1. 2.

... and Fault Attacks
• Inspiration 1: Bar-El et al. “The Sorcerer's

Apprentice Guide to Fault Attacks” (FTDC 2004):

• Inspiration 2: Govindavajhala & Appel, 2003,
“Using Memory Errors to Attack Virtual Machine”:
– Java type confusion using a 50W light bulb!
– Required specially designed software.

“[...], the processor just skipped a number of
instructions and resumed normal execution several
microseconds after the glitch.”

The Problem (revised)

Given the background,
– TOCTOU introduced by the verifier in the JVM,
– focused “instruction skipping” glitches,

can we design type confusion attacks at the Java
bytecode level? Attacks should:
– be well focused,
– use verifiable programs.

An Example (1)

p
int illegalCast(Object ref)
{

Object o = ref;

int i = 1;

return i;

}

aload 1
astore 2
iconst 1
istore 3
iload 3
ireturn

Specially designed code ...

Java: bytecode:

An Example (2)

p
int illegalCast(Object ref)
{

Object o = ref;

int i = 1;

return i;
return ref;

}

aload 1
astore 2
iconst 1
istore 3
iload 3
ireturn

a glitch

... combined with a focused fault ...

... can lead to type confusion! (“operand snatching”)

Other Possible Java Targets
• checkcast instructions:

– run-time type compatibility check
• Attacking program counter:

– The bytecode has clear byte boundaries
– Shifting the PC changes radically meaning of the

program
• Sub-instructions (run-time checks):

– Array boundary checks
– Null pointer checks

Attacking Real Systems (1)

1.Interpreted?
a. switched
b. direct threading
c. in-line threading

2.Compiled?
a. just in time
b. ahead of time
c. HotSpot

3. Hardware?
a. hardware translation
b. Java processor
c. co-processor

What kind of Java...

... and how does the bytecode map to native instructions of
the underlying architecture?

Attacking Real Systems (2)

• It looks like:
– small embedded systems are more likely to

maintain the stack model in computation (even
when dynamically compiled), thus making
operand snatching easier.

Counter-measures

• Fault-detection and recovery methods can be
applied.

• Change from stack machine to register machine.
• The problem raised mainly because of TOCTOU

condition in the JVM. Resolve by removing the
TOCTOU condition?
– Defensive Java Virtual Machine (work in

progress).

Conclusions

• We have presented a method to attack Java type
system using a combination of focused glitches and
malicious programs.

• The attack scheme can confuse the Java type system
when a normal Java virtual machine is used.

• Open questions:
– How to apply the method in practice?
– How to apply the method to an arbitrary

program?

Thank You for Your time!

Comments?
Questions?

