
Previous Work Our Algorithm

Blinded Fault Resistant Exponentiation

Guillaume Fumaroli1 David Vigilant2

1 Thales Communications
guillaume.fumaroli@fr.thalesgroup.com

2 Gemalto
david.vigilant@gemalto.com

FDTC ’06

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm

Outline

1 Previous Work
Exponentiation in Cryptosystems
Algorithms and Attacks

2 Our Algorithm
Dialectic / Toward a secure algorithm
Algorithm
Analysis

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Outline

1 Previous Work
Exponentiation in Cryptosystems
Algorithms and Attacks

2 Our Algorithm
Dialectic / Toward a secure algorithm
Algorithm
Analysis

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Definition :

Definition (Group Exponentiation)

Let (G,×) be a group,

x be an element of G, and k be an integer :

xk = x × x × . . .× x| {z }
k times

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Implemented in various cryptosystems – Example 1

RSA Signature (Straightforward Mode)

Group : (Z∗

N , ×)

Initialization : N = p · q with p, q prime

Public Key : {N,e}

Private Key : {p,q,d} where d ≡ e−1 mod ϕ(N),

Let M be the message then :

S ≡ Ṁd mod N

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Implemented in various cryptosystems – Example 2

ECDH over Fp (Static Mode)

Group : (E(Fp), Point Addition)

Initialization : QA = dA · P , QB = dB · P

QA = P + P + . . . + P| {z }
dA times

Public Keys : QA, QB

Private Keys : dA, dB

A
QA−→ B

A
QB←− B

K = dA ·QB = dB · QA

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Exponentiation – goals and constraints :

Critical Operation

Plays a central role in PKC,

Manipulates sensitive data.

Constraints in Embedded Devices

Costly operation

Variables reach critical sizes

Some parameters not always available to the device

Targeted by side-channel attacks

⇒ Build secure standalone exponentiation requiring neither extra
parameters nor precomputations

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Exponentiation – goals and constraints :

Critical Operation

Plays a central role in PKC,

Manipulates sensitive data.

Constraints in Embedded Devices

Costly operation

Variables reach critical sizes

Some parameters not always available to the device

Targeted by side-channel attacks

⇒ Build secure standalone exponentiation requiring neither extra
parameters nor precomputations

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Naive Implementation : Square-and-multiply

Input: x ∈ G, k =
∑t−1

i=0
ki2

i
∈ N

Output: xk
∈ G

R0 ← 1; R1 ← x

for j = t− 1 down to 0 do

R0 ← R0
2

if kj = 1 then R0 ← R0R1

end for

return R0

Remark

Square-and-multiply broken by simple power analysis.

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Square-and-multiply-always (CHES ’99 Coron):

Input: x ∈ G, k =
∑t−1

i=0
ki2

i
∈ N

Output: xk
∈ G

R0 ← 1; R2 ← x

for j = t− 1 down to 0 do

R0 ← R0
2

Rk̄j
← Rk̄j

R2

end for

return R0

Remark

Square-and-multiply-always broken by safe-error attacks
(CHES ’02 Joye and others).

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Montgomery Ladder (CHES ’02 Joye and others):

Input: x ∈ G, k =
∑t−1

i=0
ki2

i
∈ N

Output: xk
∈ G

R0 ← 1; R1 ← x

for j = t− 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

end for

return R0

Properties

Atomic algorithm

No dummy operation

Montgomery-Ladder is practical and withstands aforementioned attacks

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Montgomery Ladder:

Properties

R1 = R0 × x

Example (k = (1011)2)

Initialization: (R0, R1) = (1, x)
Step 1: bit = 1

R0 ← R0R1 = x

R1 ← R2
1 = x2

Step 2: bit = 0

R1 ← R1R0 = x3

R0 ← R2
0 = x2

Step 3: bit = 1

R0 ← R0R1 = x5

R1 ← R2
1 = x6

Step 4: bit = 1

R0 ← R0R1 = x11

R1 ← R2
1 = x12

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Montgomery Ladder:

Properties

R1 = R0 × x

Example (k = (1011)2)

Initialization: (R0, R1) = (1, x)
Step 1: bit = 1

R0 ← R0R1 = x

R1 ← R2
1 = x2

Step 2: bit = 0

R1 ← R1R0 = x3

R0 ← R2
0 = x2

Step 3: bit = 1

R0 ← R0R1 = x5

R1 ← R2
1 = x6

Step 4: bit = 1

R0 ← R0R1 = x11

R1 ← R2
1 = x12

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Montgomery Ladder:

Properties

R1 = R0 × x

Example (k = (1011)2)

Initialization: (R0, R1) = (1, x)
Step 1: bit = 1

R0 ← R0R1 = x

R1 ← R2
1 = x2

Step 2: bit = 0

R1 ← R1R0 = x3

R0 ← R2
0 = x2

Step 3: bit = 1

R0 ← R0R1 = x5

R1 ← R2
1 = x6

Step 4: bit = 1

R0 ← R0R1 = x11

R1 ← R2
1 = x12

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Montgomery Ladder:

Properties

R1 = R0 × x

Example (k = (1011)2)

Initialization: (R0, R1) = (1, x)
Step 1: bit = 1

R0 ← R0R1 = x

R1 ← R2
1 = x2

Step 2: bit = 0

R1 ← R1R0 = x3

R0 ← R2
0 = x2

Step 3: bit = 1

R0 ← R0R1 = x5

R1 ← R2
1 = x6

Step 4: bit = 1

R0 ← R0R1 = x11

R1 ← R2
1 = x12

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Exponentiation in Cryptosystems Algorithms and Attacks

Montgomery Ladder:

Properties

R1 = R0 × x

Example (k = (1011)2)

Initialization: (R0, R1) = (1, x)
Step 1: bit = 1

R0 ← R0R1 = x

R1 ← R2
1 = x2

Step 2: bit = 0

R1 ← R1R0 = x3

R0 ← R2
0 = x2

Step 3: bit = 1

R0 ← R0R1 = x5

R1 ← R2
1 = x6

Step 4: bit = 1

R0 ← R0R1 = x11

R1 ← R2
1 = x12

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Outline

1 Previous Work
Exponentiation in Cryptosystems
Algorithms and Attacks

2 Our Algorithm
Dialectic / Toward a secure algorithm
Algorithm
Analysis

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Dialectic

Strong constraints example met on smart cards

Implement a blinded 2048-bit RSA signature in straightforward mode:

Maximal size of co-processor registers = 2048 bits

p, q and e not available

How to build a generic blinding of the exponentiation?

Remark

Additive mask on base element difficult

Additive mask on private exponent difficult

Precomputation of a mask / refresh (Coron CHES99) difficult

Problem in randomizing projective coordinates (Goubin, Kunz-Jacques
CHES05)

⇒ Need a generic DPA-immune algorithm
Only multiplicative mask on the base element well-suited

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Dialectic

Strong constraints example met on smart cards

Implement a blinded 2048-bit RSA signature in straightforward mode:

Maximal size of co-processor registers = 2048 bits

p, q and e not available

How to build a generic blinding of the exponentiation?

Remark

Additive mask on base element difficult

Additive mask on private exponent difficult

Precomputation of a mask / refresh (Coron CHES99) difficult

Problem in randomizing projective coordinates (Goubin, Kunz-Jacques
CHES05)

⇒ Need a generic DPA-immune algorithm
Only multiplicative mask on the base element well-suited

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Dialectic

Strong constraints example met on smart cards

Implement a blinded 2048-bit RSA signature in straightforward mode:

Maximal size of co-processor registers = 2048 bits

p, q and e not available

How to build a generic blinding of the exponentiation?

Remark

Additive mask on base element difficult

Additive mask on private exponent difficult

Precomputation of a mask / refresh (Coron CHES99) difficult

Problem in randomizing projective coordinates (Goubin, Kunz-Jacques
CHES05)

⇒ Need a generic DPA-immune algorithm
Only multiplicative mask on the base element well-suited

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Dialectic / Toward a secure algorithm

In our context, the only practical situation would be the multiplicative mask
balanced exponentiation (MMBE):
Let r be a random element in G

1 S1 = (Ṁr)d

2 S2 = (r−1)d

3 S = S1 × S2 = Ṁd

Remark

Very costly solution (2 atomic exponentiations required)

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Our Algorithm:

Input: x ∈ G, k =
∑t−1

i=0
ki2

i
∈ N

Output: xk
∈ G

Pick a random r ∈ G

R0 ← r; R1 ← rx; R2 ← r−1

for j = t− 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

R2 ← R2
2

end for

return R2R0

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Our Algorithm:

Properties

R1 · R2 = R0 · R2 × x

Example (k = (1011)2)

Initialization: (R0, R1, R2) = (r , xr , r−1)
Step 1: bit = 1

R0 ← R0R1 = xr2

R1 ← R2
1 = x2r2

R2 ← R2
2 = r−2

Step 2: bit = 0

R1 ← R1R0 = x3r4

R0 ← R2
0 = x2r4

R2 ← R2
2 = r−4

Step 3: bit = 1

R0 ← R0R1 = x5r8

R1 ← R2
1 = x6r8

R2 ← R2
2 = r−8

Step 4: bit = 1

R0 ← R0R1 = x11r16

R1 ← R2
1 = x12r16

R2 ← R2
2 = r−16

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Our Algorithm:

Properties

R1 · R2 = R0 · R2 × x

Example (k = (1011)2)

Initialization: (R0, R1, R2) = (r , xr , r−1)
Step 1: bit = 1

R0 ← R0R1 = xr2

R1 ← R2
1 = x2r2

R2 ← R2
2 = r−2

Step 2: bit = 0

R1 ← R1R0 = x3r4

R0 ← R2
0 = x2r4

R2 ← R2
2 = r−4

Step 3: bit = 1

R0 ← R0R1 = x5r8

R1 ← R2
1 = x6r8

R2 ← R2
2 = r−8

Step 4: bit = 1

R0 ← R0R1 = x11r16

R1 ← R2
1 = x12r16

R2 ← R2
2 = r−16

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Our Algorithm:

Properties

R1 · R2 = R0 · R2 × x

Example (k = (1011)2)

Initialization: (R0, R1, R2) = (r , xr , r−1)
Step 1: bit = 1

R0 ← R0R1 = xr2

R1 ← R2
1 = x2r2

R2 ← R2
2 = r−2

Step 2: bit = 0

R1 ← R1R0 = x3r4

R0 ← R2
0 = x2r4

R2 ← R2
2 = r−4

Step 3: bit = 1

R0 ← R0R1 = x5r8

R1 ← R2
1 = x6r8

R2 ← R2
2 = r−8

Step 4: bit = 1

R0 ← R0R1 = x11r16

R1 ← R2
1 = x12r16

R2 ← R2
2 = r−16

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Our Algorithm:

Properties

R1 · R2 = R0 · R2 × x

Example (k = (1011)2)

Initialization: (R0, R1, R2) = (r , xr , r−1)
Step 1: bit = 1

R0 ← R0R1 = xr2

R1 ← R2
1 = x2r2

R2 ← R2
2 = r−2

Step 2: bit = 0

R1 ← R1R0 = x3r4

R0 ← R2
0 = x2r4

R2 ← R2
2 = r−4

Step 3: bit = 1

R0 ← R0R1 = x5r8

R1 ← R2
1 = x6r8

R2 ← R2
2 = r−8

Step 4: bit = 1

R0 ← R0R1 = x11r16

R1 ← R2
1 = x12r16

R2 ← R2
2 = r−16

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Our Algorithm:

Properties

R1 · R2 = R0 · R2 × x

Example (k = (1011)2)

Initialization: (R0, R1, R2) = (r , xr , r−1)
Step 1: bit = 1

R0 ← R0R1 = xr2

R1 ← R2
1 = x2r2

R2 ← R2
2 = r−2

Step 2: bit = 0

R1 ← R1R0 = x3r4

R0 ← R2
0 = x2r4

R2 ← R2
2 = r−4

Step 3: bit = 1

R0 ← R0R1 = x5r8

R1 ← R2
1 = x6r8

R2 ← R2
2 = r−8

Step 4: bit = 1

R0 ← R0R1 = x11r16

R1 ← R2
1 = x12r16

R2 ← R2
2 = r−16

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Security Analysis:

Properties

1 Simple Side-Channel Attacks
Keep Montgomery-Ladder atomicity
No conditional branching

2 Differential Side-Channel Attacks
Manipulated variables are randomized / decorrelated from inputs-outputs
Multiplicative mask changes at each loop

3 Fault Attacks
No Dummy Operation
Whenever a fault is injected:

Output modified
Consistency lost between R0, R1 and R2 ⇒ Random output not exploitable

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Security Analysis:

Properties

1 Simple Side-Channel Attacks
Keep Montgomery-Ladder atomicity
No conditional branching

2 Differential Side-Channel Attacks
Manipulated variables are randomized / decorrelated from inputs-outputs
Multiplicative mask changes at each loop

3 Fault Attacks
No Dummy Operation
Whenever a fault is injected:

Output modified
Consistency lost between R0, R1 and R2 ⇒ Random output not exploitable

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Security Analysis:

Properties

1 Simple Side-Channel Attacks
Keep Montgomery-Ladder atomicity
No conditional branching

2 Differential Side-Channel Attacks
Manipulated variables are randomized / decorrelated from inputs-outputs
Multiplicative mask changes at each loop

3 Fault Attacks
No Dummy Operation
Whenever a fault is injected:

Output modified
Consistency lost between R0, R1 and R2 ⇒ Random output not exploitable

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Security Analysis:

Avoiding exponent / Loop manipulation
(Boneh, DeMillo, Lipton JoC ’01)

Input: x ∈ G, k =
∑t−1

i=0
ki2

i
∈ N,

CKSref the checksum of k.

Output: xk
∈ G

Pick a random r ∈ G

R0 ← r; R1 ← rx; R2 ← r−1

init(CKS)

for j = t− 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

R2 ← R2
2

update(CKS, kj)

end for

R2 ← R2 ⊕ CKS⊕ CKSref

return R2R0

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Security and Efficiency Analysis:

Exponentiation in Strong Constraints : Comparison

Security Analysis
Attacks Naive ML MMBE Our Algo

SPA, Timing Not immune Immune Immune Immune
Fault Not immune Immune Immune Immune
DPA Not immune Not immune Immune Immune

Complexity and Storage
Complexity tS,(t/2)M tS,tM 2tS,(2t+1)M,1I 2tS,(t+1)M,1I

Buffers 2(or 3) 2(or 3) 3(or 4) 3(or 4)
(t = ⌈log2(k)⌉)
S: Square / M: Multiplication / I: inversion

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation



Previous Work Our Algorithm Dialectic / Toward a secure algorithm Algorithm Analysis

Conclusion:

Summary

Blinded Fault Resistant Exponentiation Algorithm:

Inherently thwarts all known-attacks

No extra parameters required

At least 25 % decreases complexity compared to MMBE

Suitable to strong embedded device constraints

Guillaume Fumaroli and David Vigilant Blinded Fault Resistant Exponentiation


	Previous Work
	Exponentiation in Cryptosystems
	Algorithms and Attacks

	Our Algorithm
	Dialectic / Toward a secure algorithm
	Algorithm
	Analysis


