@ELECTHGNICS

Cheap Hardware Parallelism
Implies Cheap Security

Onur Aclicmez and Jean-Pierre Seifert

Introduction

Related and Previous Work
Multi-threading Basics

Exploiting Shared Functional Units

Comparison to Other MicroArchitectural
Cryptanalysis Technigues

Conclusions

side channel attacks are methods by which an attacker can
xtract secret information by exploiting some real-world’s
mplementation issues of a specific cryptographic algorithm.

Recently, the Side-Channel attack arena hit the PC as a new
ictim platform:

— Especially interesting since maturing Trusted Computing efforts promise a
“trusted environment” with isolated execution for applications, etc.

"his new Side-Channel attack arena iIs different from
mbedded security market

— due to the PC platform environment, which is quite different from the
embedded security market.

— Only pure “unpriviliged” software-based attacks are really interesting.

AicroArchitectural Side-Channel attacks are a special new
lass of attacks that exploit the microarchitectural and

hroughput-oriented internal functionality of modern processc
omponents.

‘hese attacks capitalize on the situations where several
\pplications share the same processor resources, and the

hared usage between spy and crypto process allows a spy
)FOCEsSS

— running in parallel to the victim process

to extract critical information like secret keys.

on powerful PC-platforms many applications can run in para
— Either quasi-parallel enabled by OS scheduling, or

— More or less explicitly parallel depending on the degree of additional hardwa

"hus, several applications share the same processor and Its
esources, and also at more or less the same time.

"herefore, when a highly critical crypto algorithm Is executec
here Is the potential threat that a malicious or so called spy
)rocess Is executed in parallel with the crypto process which
night try to extract critical or secret information by “spying” o
he crypto process during its execution.

Hu 1992] — Covert channels by caches
rostle 1998] — Cache attack against trusted keyboard input

Page 2002] — Theoretical cache attacks via power trace

'sunoo Tsujihara Minematsu Miyuachi 2002],
'sunoo Saito Suzaki Shigeri Miyauchi 2003] — Timing attacks via internal collisic

3ernstein 2004] — Pure timing attack on AES
Jercival 2005] — Cache attack on RSA

'romer Shamir Osvik 2005/2006] — First work which fully demonstrated an effici
ache attack on AES in a real-life setting

\eve Seifert 2006] — Improvements of Tromer Shamir Osvik AES cache attack
Aclicmez Ko¢ Schindler 2007] — Remote cache attack on AES

Aclicmez Kog¢ Seifert 2006/2007] — Branch Prediction Attacks
Acticmez 20071 — In<triiction Cache Attack

Aodern superscalar processors [ven state]
an issue several instructions to

ndependent functional units

EaCh CyCIe Processor Execution Processor Executic
Resources Resources

"he benefit of such superscalar
\rchitectures is ultimately limited
)y the parallelism available in a Mlti-processing
ingle thread, I.e., instruction SR Pty
evel parallelism (ILP), even In
he presence of Out-of-Order

Xecution engines.

Time (proc. cycles)

>simultaneous Multi Threading

S a processor design that pr sate [vch st 3

ombines hardware e

nultithreading with superscalar Processor Execution §
Resources

)rocessor technology to allow
nultiple threads to issue
nstructions each cycle

Uop Register Register
Queue Rename Queue Sched Read Execute L1Cache Write Retire

«Simultaneous Mult
Threading interleav
W Instructions from
’Hﬂ’w different threads in
e e the CPU pipeline

simultaneous Multi Threading
— Two threads are running simultaneously
— They share the CPU resources “on-the-fly”

— Instructions from one thread affect the execution of the other thread
* The execution time statistics of a process heavily depend on
the execution of the other thread

Jur observation:

— Pentium-4 HT has a single integer multiplier shared between logical
DrOCEessors

— If both threads issue several multiplication instructions at the same
time, they will suffer from a race condition

A spy process can detect when a cipher process executes multiplications

DpenSSL’s RSA implementation:

— First performs multi-precision multiplication, then reduces the result

— Has different functions for multi-precision multiplication and square
operations (Karatsuba vs. normal multiplication)

— Modular square operation takes less time than multiplication

"he goal of shared FU:

— Execute several multiplication instructions in the spy

— Detect when the cipher executes multi-precision functions and how long these
functions take (allows us to distinguish multiplication from square)

crypto thread: spy thread:

S=M for many ; do
for: from 1 to n — 1 do
S=5+5{mod\)
start some long integer multuphcation
“‘r."‘,- = | then
S=5+M{mod\N)

fy — Felock cveles {lON Integer multiplication)

Ve tested our idea on Pentium-4 HT by running our spy
Imultaneously with an RSA process (OpenSSL)

Results:
points of interest

1000 -
900
800 +
700
600 + —
5OO f o
400 L —r—

300
200
100

0 5000 10000 15000 20000 25000 30000 35000

low, lets zoom In

o o o

*\We inserted artificial
dummy for loops after
each operation. A long
loop after each mult. ar
= a shorter loop after eac

sg.

o

e
. . . o e *s
'.—.—""“ﬂ.—.— —:.—;:’”‘;-.q“ — .“k}g.:p-ﬁ _—’.' o:"’.*ﬂ" “J.S‘ .‘wa

W

o O o o o o

0 50 100 150 200 250 300 350 400 450

he high values appear almost all the time at the 7 or 8" measurements after tt
tarting point of each multiplication and square operation within the crypto proce:

he red bar shows the length of a multiplication

he black bars shows the length of square operations

.onclusion:

— We could pinpoint the beglnnlng of each RSA operatlon (mult./sq.)

‘A’A o . B IAI AIIA*: lllll AIA s I* IAI AAIL e B S ‘l‘Am o S B B N BA P e AI —~~ dh5— *IAA *:IMIIAAI AI:“ AAAAAA

chown MA types:

— Cache Attacks (Page, Tsunoo et. al., Bernstein, Osvik et. al., Percival,
Neve et. al., Aclicmez et. al.)

— Branch Prediction Analysis (Aclicmez et. al.)
— Instruction Cache Analysis (Aclicmez)

\Il of these attacks exploit persistent states of buffers (cache
3TB, etc.) and rely on

— either h/w assisted parallelism (e.g., SMT, multi-processors, etc.)
— or s/w assisted parallelism (e.g., OS scheduling on uniprocessors)

SMT Is not a requirement for these attacks

shared FU attack does not depend on persistent states

-unctional units must be shared between running threads
— It can only work on SMT

Arch State I Arch State

Processor Execution

Processor Execution Processor Execution
Resources

Resources Resources

Ve have introduced a new SMT based attack type that cann
vork on non-SMT systems

Jur results indicate that:

— Simultaneous Multi-threading has intrinsic and unigue security weakness:
that do not exist in other designs

— In other words:

@ELECTHGNICS

Thank You!

Questions?

