
Cheap Hardware Parallelism
Implies Cheap Security

Onur Acıiçmez and Jean-Pierre Seifert

• Introduction

• Related and Previous Work

• Multi-threading Basics

• Exploiting Shared Functional Units

• Comparison to Other MicroArchitectural
Cryptanalysis Techniques

• Conclusions

Side channel attacks are methods by which an attacker can
extract secret information by exploiting some real-world’s
mplementation issues of a specific cryptographic algorithm.

Recently, the Side-Channel attack arena hit the PC as a new
victim platform:
– Especially interesting since maturing Trusted Computing efforts promise a

“trusted environment” with isolated execution for applications, etc.

This new Side-Channel attack arena is different from
embedded security market
– due to the PC platform environment, which is quite different from the

embedded security market.
– Only pure “unpriviliged” software-based attacks are really interesting.

MicroArchitectural Side-Channel attacks are a special new
class of attacks that exploit the microarchitectural and
hroughput-oriented internal functionality of modern processo
components.

These attacks capitalize on the situations where several
applications share the same processor resources, and the
shared usage between spy and crypto process allows a spy
process
– running in parallel to the victim process

to extract critical information like secret keys.

On powerful PC-platforms many applications can run in para
– Either quasi-parallel enabled by OS scheduling, or
– More or less explicitly parallel depending on the degree of additional hardwa

D l P D l C Si lt M lti Th di

Thus, several applications share the same processor and its
esources, and also at more or less the same time.

Therefore, when a highly critical crypto algorithm is executed
here is the potential threat that a malicious or so called spy
process is executed in parallel with the crypto process which
might try to extract critical or secret information by “spying” o
he crypto process during its execution.

…
Hu 1992] – Covert channels by caches
Trostle 1998] – Cache attack against trusted keyboard input
…
Page 2002] – Theoretical cache attacks via power trace
Tsunoo Tsujihara Minematsu Miyuachi 2002],
Tsunoo Saito Suzaki Shigeri Miyauchi 2003] – Timing attacks via internal collisio
…
Bernstein 2004] – Pure timing attack on AES
Percival 2005] – Cache attack on RSA
Tromer Shamir Osvik 2005/2006] – First work which fully demonstrated an efficie
cache attack on AES in a real-life setting
Neve Seifert 2006] – Improvements of Tromer Shamir Osvik AES cache attack
Acıiçmez Koç Schindler 2007] – Remote cache attack on AES
Acıiçmez Koç Seifert 2006/2007] – Branch Prediction Attacks
Acıiçmez 2007] – Instruction Cache Attack

Modern superscalar processors
can issue several instructions to
ndependent functional units
each cycle

The benefit of such superscalar
architectures is ultimately limited
by the parallelism available in a
single thread, i.e., instruction
evel parallelism (ILP), even in
he presence of Out-of-Order
execution engines.

Simultaneous Multi Threading
s a processor design that
combines hardware
multithreading with superscalar
processor technology to allow
multiple threads to issue
nstructions each cycle

•Simultaneous Multi
Threading interleave
instructions from
different threads in
the CPU pipeline

Simultaneous Multi Threading
– Two threads are running simultaneously
– They share the CPU resources “on-the-fly”
– Instructions from one thread affect the execution of the other thread

• The execution time statistics of a process heavily depend on
the execution of the other thread

Our observation:
– Pentium-4 HT has a single integer multiplier shared between logical

processors
– If both threads issue several multiplication instructions at the same

time, they will suffer from a race condition

A spy process can detect when a cipher process executes multiplications

OpenSSL’s RSA implementation:
– First performs multi-precision multiplication, then reduces the result
– Has different functions for multi-precision multiplication and square

operations (Karatsuba vs. normal multiplication)
– Modular square operation takes less time than multiplication

The goal of shared FU:
– Execute several multiplication instructions in the spy
– Detect when the cipher executes multi-precision functions and how long these

functions take (allows us to distinguish multiplication from square)

points of interest

We tested our idea on Pentium-4 HT by running our spy
simultaneously with an RSA process (OpenSSL)

Results:

Now, lets zoom in

The high values appear almost all the time at the 7th or 8th measurements after th
tarting point of each multiplication and square operation within the crypto proces

The red barred bar shows the length of a multiplicationmultiplication
The black barsblack bars shows the length of squaresquare operations
Conclusion:
– We could pinpoint the beginning of each RSA operation (mult./sq.)

We could distinguish multiplications from squares due to the timing difference

•We inserted artificial
dummy for loops after
each operation. A longe
loop after each mult. an
a shorter loop after eac
sq.

Known MA types:
– Cache Attacks (Page, Tsunoo et. al., Bernstein, Osvik et. al., Percival,

Neve et. al., Acıiçmez et. al.)
– Branch Prediction Analysis (Acıiçmez et. al.)
– Instruction Cache Analysis (Acıiçmez)

All of these attacks exploit persistent states of buffers (cache
BTB, etc.) and rely on
– either h/w assisted parallelism (e.g., SMT, multi-processors, etc.)
– or s/w assisted parallelism (e.g., OS scheduling on uniprocessors)

SMT is not a requirement for these attacks

Shared FU attack does not depend on persistent states
Functional units must be shared between running threads
– It can only work on SMT

We have introduced a new SMT based attack type that cann
work on non-SMT systems

Our results indicate that:
– Simultaneous Multi-threading has intrinsic and unique security weaknesse

that do not exist in other designs

– In other words:

Thank You!

Questions?

