
Countermeasures Against
Branch Target Buffer Attacks

Giovanni Agosta, Luca Breveglieri
Politecnico di Milano

Gerardo Pelosi
Università degli Studi di Bergamo

Israel Koren
University of Massachusetts at Amherst

FDTC 2007 September 10, 2007

Outline

Microarchitecture Overview

BTB Attack

State of the art countermeasures

Proposed countermeasures:
Predicated Execution

Indirect Jump Conversion

Performance Evaluation

Concluding Remarks

Execution
Stages Write BackInstruction

Fetch Decode

Branch Target Buffer (BTB) is a cache structure indexed by the
low order part of the branch address; the cache data is the last
target address of that branch

• Dynamic prediction of a branch outcome is
based on a two-bit saturating counter that is
an entry of a Branch Prediction Table (BPT)
• The BHR is a shift register that keeps the
history of most recent branch outcomes
• BPT is indexed by a portion of the branch
address or a combination of the branch
address with a branch history register (BHR)

BTB
BHR

BPT

Branch Prediction

Microarchitecture Overview

FSM for Dynamic Prediction

Two-bit predictors are used to improve performance over one-bit
predictors (MR=2/k+1 for 1-bit predictors)

NTN1

NTN0

TN0

NTN0

……

NTN0

Outcome
(Taken /

Not Taken)
Prediction

Misprediction rate =
k+1

1

h times

k times

State 3
prediction: jump

State 2
prediction: jump

State 1
prediction: no jump

State 0
prediction: no jump

T

T

T

T

NT

NT

NT

NT

k times

BTB Attack – Basic Principle

Simultaneous Multithreaded Processors (SMPs)
execute two threads at the same time

One physical CPU but two logical CPUs: in the same
cycle, instructions from the two threads are executed on
different execution units in the CPU

HW information leakage is feasible (exploited by
Acıiçmez, Koç & Seifert) due to the sharing of the
branch target buffer (BTB) by all threads

A simultaneous spy-thread can be launched to discover
indirect information about execution flow of another thread
The collected log data can be used to make educated
guesses of bits of an encryption key

BTB Attack on RSA

The core of the RSA algorithm includes a loop that
handles modular squaring and multiplication

The former (squaring) is always executed
The latter (multiplication) is executed only if the key bit is 1

Attack Scenario:
A crypto process performs an RSA encryption operation
An attacking spy process executes a sufficient number of
branches to replace the BTB block used by the crypto process
The crypto-process is forced to have mispredicted branches
when it is about to compute a multiplication
The spy-process measures the time needed to perform its own
branches and is able to determine whether a branch was
taken or not in the crypto process by observing the
mispredictions occurring during its own code execution

Countermeasures: state of the art

Program Counter-Secure code [Molnar et. al]
Remove all conditional branches from a program so that all
execution traces have the same sequence of PC values
Limitation: some conditional statements can be driven at runtime
only (e.g. input values)
Experiments reported by the authors show performance
slowdown of up to 5x and an increased stack size of up to 2x

if (a) { b = c+d }
tmp[1] = b+c
tmp[0] = b
b = tmp[a]

Coron’s Method:

Limitation: unsecure w.r.t. attacks that exploit knowledge of
accessed data memory addresses

Countermeasure -
Predicated Execution

Sensitive branches are implemented as
instructions belonging to a single control flow

if (a) { b = c+d }

cmpi r1, r2, 0
add r3, r4, r5
select r2, r3, r1

// if (r2 == 0) then { r1 = 1 }
// else { r1 = 0 }
//
// r3 = r4 + r5
// if (r1 != 0) then { r2 = r3 }

Countermeasure - Indirect Jump

Replace all conditional branches in sensitive code by equivalent
indirect jumps
A specific BTB entry (fixed position) will always be changed by the
attack process independent of program logic

// r1 is 0 or 1 based on the condition expression
bz r1, label // branch to label if r1 is zero
< then statement >
jmp end

label: < else statement >
end:

// [r3] == mem. addr of < then block >
// [r3]+1 == mem. addr of < else block >
add r2, r3, r1 // r2 ← [r3] + [r1]
load r4, 0(r2) // r4← [0+[r2]]
jmpl r4 // PC ← [r4]

Spy-process will cause the branch to be always mispredicted, but will
also find its own branches to be always mispredicted - the attacked
process also changes the specific BTB entry for each execution

Indirect Jump Conversion

Applicable to high level source codes by replacing if-then-else
statements with an ad-hoc macro (simple compiler pass with
minimal overhead)

Directly applicable to binary code when basic blocks position in
memory is known (to secure closed source cryptographic SW)

Easily implementable at link-time or in dynamic-optimizers

Each branch is still executed on different sets of PC values but
is effective against BTB attacks with negligible performance
impact w.r.t. PC-secure method

Performance Evaluation

Branch, Footprint and Data ref. penalties refer to a single branch

Execution time is given in clock cycles for 1024-RSA kernel loop

61,84632.04.83Indirect
Jump

58,96741.24.79Predicated
conditional

58,75620.81.71Coron

59,69801.01.00Original
Code

Time [clk]
1024-RSA

S&M

Data Ref.
penalty

Footprint
penalty

Branch
penaltyMethod

Memory usage in RSA S&M

The proposed countermeasures have a minimal impact
on the memory usage profile

Concluding Remarks

We surveyed several SW countermeasures
against BTB side-channel attacks

Molnar’s method gives the maximum security but
has a high overhead (5x slowdown)

The Indirect Jump method is both effective and
has low overhead (less than 1.05x slowdown)
and can be applied selectively, automatically and
without special HW support

