Secure Smartcard Design against Laser Fault Injection

FDTC 2007, September 10th

Odile DEROUET

Agenda

- Fault Attacks on Smartcard
- Laser Fault Injection
- Our experiment
- Background on secure hardware design
- Samsung Laser fault detectors design and validation
- Conclusion

Fault attacks on smartcard (principle)

Smartcard are specially designed:

- to protect sensitive content such as user secret data or cryptographic keys
 - Secure data storage
- Process those information securely
 - Secure execution (encryption, signature..)

Fault attack on smartcards

- Modify the device normal operating condition in order to generate processing errors (VCC glitch, light, laser...)
 - Retrieve secret information, secret keys
 - Bypass secure execution (pin code, call to crypto algorithm)

Fault Attacks on Smartcard (Example)

Fault attack on Operating System

Laser Fault Injection

Laser fault injection consists in exposing the device to an intense light for a brief period

• Why this attack is so powerful :

- Geometric accuracy:
 - possibility to focus the laser on a very specific part of the device
 up to 1~2um (in general ~40um square)

• Time accuracy:

- Possibility to select precisely the moment where the pulse should be sent
 - ⇒ ~nanoseconds precision
- Generate temporary faults:
 - the device remains functional after the fault is sent, attack is reproducible

Laser Fault Injection

Common Setting

- Typical laser source : pulsed nanosecond laser with selectable wavelength
- Focused with optical microscope or` single lens
- The target device is mounted on an automated table
- The whole surface of the device can be scanned while pulses are sent on top of the devices
- Pulse moment is controlled by triggering the device IO
- Pulse duration should fit into the device cycle period (~several nanosecond)

Laser Fault Injection

Choice of the wavelength

- A smartcard microcontroller is generally made of several layers
 - Depending on the laser wavelength both front and back side of the device can be perturbed
- From 400nm to 1200nm silicon might be perturb by the laser pulses
- The penetration depth increase exponentially with the laser wavelength
 - Green light (~500nm) efficient on front side
 - IR (~1000nm) efficient on backside

Effect of laser

• When the charge accumulated by photons injected by laser exceed threshold value, the value of the transistor is switched

Our experiment On a Dummy smartcard

Typical Smartcard : ROM, NVM, RAM, Logic (CPU, crypto HW....)

Potentially, any part of the silicon can be attacked provided the pulse location matches with processed operation

Our Experiment

Variety of error depending on pulse location

	Logic	ROM	RAM	NVM
Wrong cryptographic calculation	X			
Data read or write error	X	X	X	X
Wrong address read or write	X			
Instruction skipped/corrupted	X	X		X
Wrong CPU calculation	X			
Register corruption	X			

- Several command involving different devices operations (CPU, crypto...) are performed
- Laser pulses are sent in "single", "burst" or "continuous" mode while the whole surface of the device is scanned.
- When a a fault occurs the device send "error" code and the pulse location is recorded
- Among all areas, the logic part leads to a variety of different errors.

For all error cases we cross checked the errors points with detailed layout of the device

Background on secure hardware design

- Standard Light detectors:
 - Large photodiodes (Analogue Hard macro)
 - big size, easy to localize by an attacker
 - difficult to integrate into the logic
 - Low security level
- Hardened design
 - Dual rail logic with 1 state for fault detection
 - Redundant hardware
 - Hardened coprocessor, CPU
 - Good security level but high cost
 - Dedicated to each IP = long design time
- Necessity to design low cost detector, easy to integrate into the logic and independent of the IP to be protected

Laser fault detectors design

Virtual Cell detector

- Based on our assumption that flip-flip flop are sensitive to laser pulse
- A set of virtual cells made of flip-flop are connected one after the other
- After each reset each the cells are set to initial value "0" or "1"
- In case initial value is modified, the error is propagated and a detection signal is sent

Laser fault detectors design

Tri-State BUS holder detector

- Based on our assumption that BUS holders are sensitive to laser pulse
- Same principle that previous scheme, the holder are set to initial value 0 after reset, in case this value is modified, the error is propagated and a detection signal is sent

Detectors spreading

- The cells of each detector are spread among the whole logic area
- In our first trial the distance between two cells of same type was set to 150um

Detection mechanism: Interrupt generation

- When the laser pulse is detected an interrupt is generated
- The interrupt allow user to take a security action such as card "killing mechanism" to prevent an attacker to reproduce attack on same device as soon as the laser is detected !

Main benefit of those detectors

Relative low cost	For 150um distance between two cells of same type the cost represent less than 0.3% of the total logic area protected
Easy to integrate into the logic	Use standard CMOS cells similar to the logic area cells
	>easy to places and route without change of the logic structure
Good spreading among the logic	All logic area is protected
Avoid reproducibility of the attacks	Interrupt generation allow user to take security action and prevent the attacker to scan the whole device

Main drawback

• Difficult to integrate onto the memory blocks!

Laser Fault Detectors Validation

- Targeted device was tested with same set of command that our first experiment (both front and back side)
 - DES, RSA, CPU operation, Memory write read
- With 150um square laser spot size the Virtual cell systematically detected the pulse
 - One pulse is sufficient
 - No error possible on the logic
- With smaller spot (up to 40um square) partial detection with both Virtual cell and Holder cells was possible
 - The detector operates when the pulse matches with cell location (no or low spread of the pulse energy outside the spot)
 - Distance between cells and cells location should be chosen carefully
 - Virtual cell detection is faster than tri-state holder

Conclusion

Two laser detector types were presented

- Virtual cell detector
- Tri-state BUS holder detectors
- Both detectors are operating fine and can detect both front side and back side laser pulse
- Those detectors have low cost and integrate easily into the logic without high cost hardware change
- Those detectors are independent of the logic part it protects
- The distance and location of detector should be chosen carefully to fit with the most sensitive area of the logic
- Specific detection mechanism should be implemented on the Memory areas

