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History of ECC

Proposed independently in 1985 by Neal 
Koblitz from University of Washington and 
Victor Miller at IBM.
Elliptical Curve Cryptography (ECC) was 
proposed as an alternative to traditional 
public key cryptosystems such as RSA.
Public key cryptography method based on 
Elliptic Curve Theory.



Elliptic Curve Overview

An elliptical curve with the underlying field     
is defined as the set of points (x,y) that satisfy 
the equation,
There are finitely many points on such an 
elliptical curve.
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Elliptic Curve Operations

Two geometrically defined operations over 
elliptical curve groups are point addition and 
point doubling.
By selecting a point in an elliptical curve 
group, one can double it to obtain the point 
2P. After that, one can add the point P to the 
point 2P to obtain the point 3P. 
The determination of a point nP in this 
manner is referred to as Scalar Multiplication 
of a point.



ECC – How it works

K=Secret Integer, acts as Private Key.
P=Point on the Elliptic Curve.
Q=kP is the Public Key.
Given Q and P it is difficult to find K. (ECC 
Discrete Logarithmic Problem)



ECC – Discrete Logarithmic Problem

The elliptical curve discrete logarithmic 
problem is: given points P and Q in the group, 
find a number, k, such that Pk=Q.
One way we might suggest in finding k is to 
compute multiples of P until Q is found.
However, in real applications, k would be 
large enough such that it would be impractical 
to determine k in this manner.



ECDH – Elliptic Curve Diffie-Hellman

Elliptical Curve Diffie-Hellman Protocol is a way for two parties to 
generate a private key over an insecure network using ECC.
This key can later be used for communication by both parties who
wish to engage in secure communication using a symmetric block 
cipher (e.g. RC5, AES, DES).
The protocol for generation of the shared secret key using ECC is 
described below.

1. Alice takes a point Q and generates a random number     .
2. Alice computes the point     =    *Q and sends it to Bob
3. Bob generates a random number    , computes     =    *Q and 

sends it to Alice
4. Alice computes        =      *     , and Bob computes      =    *
5. =      =       Q, This is used as the shared secret key
The only keys that are available to the public are     ,      and Q. Due 
to the Elliptical curve property, it is not practical to calculate k given P 
and Q. Thus, this method for negotiating the secret key is secure.
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ECC Hierarchy
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Point Addition (Geometric Approach)

Suppose that P and Q are two 
distinct points on an elliptic 
curve.
To add the points P and Q, a line 
is drawn through the two points. 
This line will intersect the elliptic 
curve in exactly one more point, 
call -R. 
The point -R is reflected in the x-
axis to the point R. 
The law for addition in an elliptic 
curve group is P + Q = R 



Point Addition (Algebraic Approach)

The addition of two points on an elliptic curve 
is shown below.

Point Addition
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Point Doubling (Geometric Approach)

To add a point P to 
itself, a tangent line to 
the curve is drawn at 
the point P. 
The tangent line 
intersects the elliptic 
curve at exactly one 
other point, -R. -R is 
reflected in the x-axis 
to R. 



Point Doubling (Algebraic Approach)

The doubling of a point on the elliptical curve 
is shown below.

Point Doubling
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Multiplication

The shift-and-add algorithm for multiplication 
is given below 

Multiplication with interleaved modular reduction



Inversion
The inversion algorithm is shown below



Strength of ECC

ECC devices require small key sizes.
Hardware implementations of ECC require:

Less storage space
Less processing power
Results in faster computations compared to 
conventional public key systems.

This is especially useful in area critical and 
constrained environments such as smart cards, 
wireless devices, and handheld computers.



Concurrent Error Detection 
Introduction

Faults in VLSI chips
Transient faults - die away after sometime. 
Permanent faults - do not die away with time. 

Concurrent Error Detection (CED)
Hardware Redundancy – Duplicate hardware
Timing Redundancy – Re-compute using same 
hardware



Problems with current CED methods

Hardware redundancy 
Two copies of hardware
Detects transient and permanent faults

Timing Redundancy
No hardware overhead
Detects only transient faults



CED for ECC based systems
Due to its designed use in area critical devices, 
Hardware redundancy is impractical.
We propose a timing redundancy based technique 
which can detect both transient and permanent faults.

This is done by changing the timing redundancy 
technique such that different data is operated on 
during the CED re-computation.

Exploits the involution property of the 
inversion block
Exploits the multiplicative inverse property 
of the multiplication block.



CED for ECC based systems

Other ECC CED implementations describe CED 
techniques for the multiplication over GF(2m). In 
[32],they describe a robust Montgomery
multiplier array with concurrent error detection. 

The multiplier is a small subset for the ECC design
This focuses on a specific multiplier algorithm 

We describe a CED technique for the entire ECC 
implementation 

We do not focus on just one primitive of the design.
Our technique is independent of the algorithm for the 
primitive.

32. Chiou, C., Lee, C., Deng, A., and Lin, J. 2006. Concurrent Error Detection in Montgomery Multiplication over 
GF(2m). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A, 2 (Feb. 2006), 566-574.



Involution property

The involution property of the inversion block states that 
inv(inv(x))=x.

This is true regardless of the algorithm used to implement 
inversion.

CED scheme for the inversion block [21].

21. Nikhil Joshi, KaijieW u, Jayachandran Sundararajan, and Ramesh Karri. "Concurrent Error Detection for Involutional Functions With Applications in Fault-
Tolerant Cryptographic Hardware Design". IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 
VOL. 25, NO. 6, JUNE 2006.



Multiplicative inverse property
The multiplicative inverse property of the inversion block states that inv(x)*x = 1.
The CED scheme performed for the multiplication block is:

If either the multiplication or the inversion block has a fault and produces the wrong result, the redundant 
multiplication will not result in a(x).
We could have implemented this in such a way that it just checks for a constant value of inv(x)*x = 1. 

We have chosen against this as not to have a single point of failure. That is, stuck at one faults would 
render the implementation useless. 

Our implementation takes the input data, a(x), to compare against. 
In normal operation, the input data will be changing and thus the comparator will always have 
different data to compare against.

(a(x)*b(x))* b-1(x) = a(x)*(b(x)* b-1(x)) = a(x)
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CED architecture for point addition
The inversion operation is performed on (xq+xp) to obtain (xq+xp)-1.
(xq+xp)-1 and (yq+yp) are sent to the GF multiplication block to obtain λ.
Concurrent to this operation, (xq+xp)-1 is sent to the GF inversion block to 
perform a CED redundant computation to get ((xq+xp)-1) -1 and check if this is 
equal to the original input (xq+xp). Futhermore, (xq+xp) is multiplied with λ to 
check if it will be equal to (yq+yp).
The second normal multiplication operation is performed on λ and (xp+xr). 
To check this operation for errors, λ-1 is required and is thus fed into the 
inversion block.
Concurrent to this operation, we can check for errors in the square and 
reduction block. by feeding λ as both the inputs to the multiplier and 
checking if the result is the same as that obtained using the square and reduce 
module, failing which an error is reported.
Finally, the result of the final multiplication and λ-1 is fed to the multiplier 
and checked if the result obtained is (xp+xr).



CED Architecture
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Fault Coverage Analysis
VHDL code was synthesized into a netlist
Single and Multiple bit faults were injected
Fault detected if:

Output incorrect
Error signal asserted (1)

Fault not detected:
Output incorrect
Error signal de-asserted (0)

Results:
~100% Fault Coverage
These are our results that we obtained by randomly injecting faults 
into the design. 
While we did strive for testing as many locations as possible it did 
not test all signals of the netlist.
There is a small and negligible probability for multiple bit faults to 
affect the CED hardware in such a way that it goes undetected.



Results

The CED architecture:
Takes three inversion times plus one multiplication 
time 

The non-CED architecture:
Takes one inversion time plus two multiplication 
time.

This implies a worst case 90% time overhead, 
however, we detect all transient and permanent 
faults.



Timing Results in Normal 
Implementation

424.7907 μs Elliptic Curve Scalar Multiplication
(162 Point Doubles, 81 Point Adds)

1.75861 μsPoint Doubling

1.72711 μsPoint Addition

0.98912 μsInversion

0.375416 μsMultiplication

0.0051704 μsSquaring and Reduction

2.248 nsAddition

Time requiredOperation



Area and Time overhead in CED 
Implementation
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