
Register Transfer Level Concurrent
Error Detection in Elliptic Curve
Crypto Implementations

Richard Stern, Nikhil Joshi, Kaijie Wu and Ramesh Karri
L-3 Communication – Systems East, Citibank, NA, University of Illinois,

Chicago, Polytechnic University, Brooklyn
{rstern01, njoshi01, kwu01, rkarri}@utopia.poly.edu

History of ECC

Proposed independently in 1985 by Neal
Koblitz from University of Washington and
Victor Miller at IBM.
Elliptical Curve Cryptography (ECC) was
proposed as an alternative to traditional
public key cryptosystems such as RSA.
Public key cryptography method based on
Elliptic Curve Theory.

Elliptic Curve Overview

An elliptical curve with the underlying field
is defined as the set of points (x,y) that satisfy
the equation,
There are finitely many points on such an
elliptical curve.

mF2

6
2

2
32 axaxxyy ++=+

Elliptic Curve Operations

Two geometrically defined operations over
elliptical curve groups are point addition and
point doubling.
By selecting a point in an elliptical curve
group, one can double it to obtain the point
2P. After that, one can add the point P to the
point 2P to obtain the point 3P.
The determination of a point nP in this
manner is referred to as Scalar Multiplication
of a point.

ECC – How it works

K=Secret Integer, acts as Private Key.
P=Point on the Elliptic Curve.
Q=kP is the Public Key.
Given Q and P it is difficult to find K. (ECC
Discrete Logarithmic Problem)

ECC – Discrete Logarithmic Problem

The elliptical curve discrete logarithmic
problem is: given points P and Q in the group,
find a number, k, such that Pk=Q.
One way we might suggest in finding k is to
compute multiples of P until Q is found.
However, in real applications, k would be
large enough such that it would be impractical
to determine k in this manner.

ECDH – Elliptic Curve Diffie-Hellman

Elliptical Curve Diffie-Hellman Protocol is a way for two parties to
generate a private key over an insecure network using ECC.
This key can later be used for communication by both parties who
wish to engage in secure communication using a symmetric block
cipher (e.g. RC5, AES, DES).
The protocol for generation of the shared secret key using ECC is
described below.

1. Alice takes a point Q and generates a random number .
2. Alice computes the point = *Q and sends it to Bob
3. Bob generates a random number , computes = *Q and

sends it to Alice
4. Alice computes = * , and Bob computes = *
5. = = Q, This is used as the shared secret key
The only keys that are available to the public are , and Q. Due
to the Elliptical curve property, it is not practical to calculate k given P
and Q. Thus, this method for negotiating the secret key is secure.

1P ak
ak

bk 2P bk

1sP ak 2P
2sP bk 1P

1sP
2sP ak bk

1P 2P

ECC Hierarchy

kP

P+Q 2P

Multiplication InversionAdditionSquaring

Point Addition (Geometric Approach)

Suppose that P and Q are two
distinct points on an elliptic
curve.
To add the points P and Q, a line
is drawn through the two points.
This line will intersect the elliptic
curve in exactly one more point,
call -R.
The point -R is reflected in the x-
axis to the point R.
The law for addition in an elliptic
curve group is P + Q = R

Point Addition (Algebraic Approach)

The addition of two points on an elliptic curve
is shown below.

Point Addition

(xq+xp)-1

(yq+yp)(xq+xp)-1

λ(xp+xr)

GF Inversion
Block

GF Multiplier
Block

Time

Inv
Time

Mul
Time

Mul
Time

Point Doubling (Geometric Approach)

To add a point P to
itself, a tangent line to
the curve is drawn at
the point P.
The tangent line
intersects the elliptic
curve at exactly one
other point, -R. -R is
reflected in the x-axis
to R.

Point Doubling (Algebraic Approach)

The doubling of a point on the elliptical curve
is shown below.

Point Doubling

(yp)-1

(xp)(yp)
-1

λ(xp+xr)

GF Inversion
Block

GF Multiplier
Block

Time

Inv
Time

Mul
Time

Mul
Time

Multiplication

The shift-and-add algorithm for multiplication
is given below

Multiplication with interleaved modular reduction

Inversion
The inversion algorithm is shown below

Strength of ECC

ECC devices require small key sizes.
Hardware implementations of ECC require:

Less storage space
Less processing power
Results in faster computations compared to
conventional public key systems.

This is especially useful in area critical and
constrained environments such as smart cards,
wireless devices, and handheld computers.

Concurrent Error Detection
Introduction

Faults in VLSI chips
Transient faults - die away after sometime.
Permanent faults - do not die away with time.

Concurrent Error Detection (CED)
Hardware Redundancy – Duplicate hardware
Timing Redundancy – Re-compute using same
hardware

Problems with current CED methods

Hardware redundancy
Two copies of hardware
Detects transient and permanent faults

Timing Redundancy
No hardware overhead
Detects only transient faults

CED for ECC based systems
Due to its designed use in area critical devices,
Hardware redundancy is impractical.
We propose a timing redundancy based technique
which can detect both transient and permanent faults.

This is done by changing the timing redundancy
technique such that different data is operated on
during the CED re-computation.

Exploits the involution property of the
inversion block
Exploits the multiplicative inverse property
of the multiplication block.

CED for ECC based systems

Other ECC CED implementations describe CED
techniques for the multiplication over GF(2m). In
[32],they describe a robust Montgomery
multiplier array with concurrent error detection.

The multiplier is a small subset for the ECC design
This focuses on a specific multiplier algorithm

We describe a CED technique for the entire ECC
implementation

We do not focus on just one primitive of the design.
Our technique is independent of the algorithm for the
primitive.

32. Chiou, C., Lee, C., Deng, A., and Lin, J. 2006. Concurrent Error Detection in Montgomery Multiplication over
GF(2m). IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A, 2 (Feb. 2006), 566-574.

Involution property

The involution property of the inversion block states that
inv(inv(x))=x.

This is true regardless of the algorithm used to implement
inversion.

CED scheme for the inversion block [21].

21. Nikhil Joshi, KaijieW u, Jayachandran Sundararajan, and Ramesh Karri. "Concurrent Error Detection for Involutional Functions With Applications in Fault-
Tolerant Cryptographic Hardware Design". IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,
VOL. 25, NO. 6, JUNE 2006.

Multiplicative inverse property
The multiplicative inverse property of the inversion block states that inv(x)*x = 1.
The CED scheme performed for the multiplication block is:

If either the multiplication or the inversion block has a fault and produces the wrong result, the redundant
multiplication will not result in a(x).
We could have implemented this in such a way that it just checks for a constant value of inv(x)*x = 1.

We have chosen against this as not to have a single point of failure. That is, stuck at one faults would
render the implementation useless.

Our implementation takes the input data, a(x), to compare against.
In normal operation, the input data will be changing and thus the comparator will always have
different data to compare against.

(a(x)*b(x))* b-1(x) = a(x)*(b(x)* b-1(x)) = a(x)

GF Multiplier

Mux Mux

a(x) b(x)

GF Inverse

Mux

b(x)

Reg

Comp.

Enable

Error

CED CED

Normal
Input

Reg

Enable

CED scheme for multiplier

CED architecture for point addition
The inversion operation is performed on (xq+xp) to obtain (xq+xp)-1.
(xq+xp)-1 and (yq+yp) are sent to the GF multiplication block to obtain λ.
Concurrent to this operation, (xq+xp)-1 is sent to the GF inversion block to
perform a CED redundant computation to get ((xq+xp)-1) -1 and check if this is
equal to the original input (xq+xp). Futhermore, (xq+xp) is multiplied with λ to
check if it will be equal to (yq+yp).
The second normal multiplication operation is performed on λ and (xp+xr).
To check this operation for errors, λ-1 is required and is thus fed into the
inversion block.
Concurrent to this operation, we can check for errors in the square and
reduction block. by feeding λ as both the inputs to the multiplier and
checking if the result is the same as that obtained using the square and reduce
module, failing which an error is reported.
Finally, the result of the final multiplication and λ-1 is fed to the multiplier
and checked if the result obtained is (xp+xr).

CED Architecture

(xq+xp)-1

(yq+yp)(xq+xp)-1

((xq+xp)-1)-1

+ check

(λ)-1

(λ)(xq+xp) + check

(λ)(λ) + check

(ψ)(λ)-1 +check

ψ = λ(xp+xr)

GF Inversion
Block

 GF Multiplier
Block

Time

Inv
Time (yp)-1

β = (xp)(yp)-1

((yp)-1)-1 +
check

(λ)-1

β (yp) + check

(λ)(λ) + check

(ψ)(λ)-1 +check

ψ = λ(xp+xr)

GF Inversion
Block

 GF Multiplier
Block

Time

Inv
Time

Mul
Time

Mul
Time

Point Addition Point Doubling

Fault Coverage Analysis
VHDL code was synthesized into a netlist
Single and Multiple bit faults were injected
Fault detected if:

Output incorrect
Error signal asserted (1)

Fault not detected:
Output incorrect
Error signal de-asserted (0)

Results:
~100% Fault Coverage
These are our results that we obtained by randomly injecting faults
into the design.
While we did strive for testing as many locations as possible it did
not test all signals of the netlist.
There is a small and negligible probability for multiple bit faults to
affect the CED hardware in such a way that it goes undetected.

Results

The CED architecture:
Takes three inversion times plus one multiplication
time

The non-CED architecture:
Takes one inversion time plus two multiplication
time.

This implies a worst case 90% time overhead,
however, we detect all transient and permanent
faults.

Timing Results in Normal
Implementation

424.7907 μs Elliptic Curve Scalar Multiplication
(162 Point Doubles, 81 Point Adds)

1.75861 μsPoint Doubling

1.72711 μsPoint Addition

0.98912 μsInversion

0.375416 μsMultiplication

0.0051704 μsSquaring and Reduction

2.248 nsAddition

Time requiredOperation

Area and Time overhead in CED
Implementation

References (1/2)

1. D. Boneh, R. DeMillo and R. Lipton, “On the importance of checking cryptographic protocols for faults”, Proceedings of Eurocrypt, Lecture Notes in
Computer Science vol 1233, Springer-Verlag, pp. 37-51, 1997.

2. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems”, Proc. of Crypto, 1997.
3. J. Bloemer and J.-P. Seifert, “Fault based cryptanalysis of AES www.iacr.org/eprint/2002/075.pdf.
4. C. Giraud, “Differential Fault Analysis on AES”, http://eprint.iacr.org/2003/008.ps
5. D. Pradhan, On-Line Testing for VLSI, Kluwer Academic Publishers, April 1998
6. I. Biehl, B. Meyer and V. Muller, “Differential Fault Attacks on Elliptic Curve Cryptosystems”, Proc. of Crypto, LNCS 1880, pp.131-146, 2000.
7. M. Ciet and M. Joye, “Elliptic Curve Cryptosystems in the Presence of Permanent and Transient Faults”, Cryptology ePrint Archive: Report 2003/028,

available at http://eprint.iacr.org/2003/028.pdf
8. J. Bloemer and J.-P. Seifert, “Sign Change Fault Attacks On Elliptic Curve Cryptosystems,” Cryptology ePrint Archive: Report 2004/227, available at

http://eprint.iacr.org/2004/227.pdf
9. N. Joshi, K. Wu and R. Karri, “Concurrent Error Detection Schemes For Involution Ciphers” Cryptographic Hardware and Embedded Systems - CHES

2004 LNCS 3156 Springer 2004
10. R Karri, K. Wu, P. Mishra and Y. Kim, “Concurrent Error Detection of Fault Based Side-Channel Cryptanalysis of 128-Bit Symmetric Block Ciphers,”

IEEE Transactions on CAD, Dec 2002
11. G. Bertoni, L. Breveglieri, I. Koren, and V. Piuri, “Error Analysis and Detection Procedures for a Hardware Implementation of the Advanced

Encryption Standard,” IEEE Transactions on Comp., vol. 52, No. 4, pp. 492-505, Apr 2003.
12. V.S. Miller, Use of elliptic curves in cryptography, Advances in Cryptology - Crypto '85, Springer-Verlag (1986), 417-426
13. N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48 (1997), 203-209.
14. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining public key cryptosystems. CACM, 21:120-126, 1978.
15. J. Lopez, R. Dahab, “An Overview of Elliptic Curve Cryptography”, Tech Report, State University of Campinas, 2000,

http://citeseer.ist.psu.edu/lop00overview.html
16. A.J. Menezes, “Elliptic Curve Public Key Cryptosystems”, Kluwer Academic Publishers
17. I. Blake, G. Seroussi, and N. Smart, “Elliptic Curves in Cryptography, Cambridge University Press”
18. D. Hankerson, J. L. Hernandez and A. Menezes, “Software Implementation of Elliptic Curve Cryptography over Binary Fields”, Proc. CHES 2000,

LNCS 1965, 2000, pp. 1-24.
19. D. V. Bailey and C. Paar, “Efficient arithmetic in finite field extensions with application in elliptic curve cryptography”, Journal of Cryptology,

14(3):153-176, 2001
20. R. Schroeppel, H. Orman, S. O’Malley, “Fast Key Exchange with Elliptic Curve Systems”, Advances in Cryptology- Proceedings of Crypto’95, LNCS,

vol.963, pp.43-56, Springer Verlag.

References (2/2)
21. N. P. Smart, “A comparison of different finite fields for use in Elliptic Curve Cryptosystems”, Computers and Mathematics with Applications, vol. 42:

91--100, Oct 2001
22. Y. Choi, H. Kim, M. Kim, Y. Park, and K. Chung, “Design of Elliptic Curve Cryptographic Coprocessor over Binary Fields over GF(2163) for ECC

protocols,” ITC-CSCC, 2001.
23. J.H. Patel, L.Y. Fung, “Concurrent Error Detection in ALUs by Recomputing with Shifted Operands,” IEEE Transaction on Comp., Vol. C.31, No.7, pp.

589 – 595. 1982.
24. Int'l Workshop on Fault Diagnosis and Tolerance in Cryptography, 2004, 2005, 2006.
25. IEEE Transactions on Computers, SPECIAL SECTION ON FAULT DIAGNOSIS AND TOLERANCE IN CRYPTOGRAPHY to appear in June 2006
26. E. Normand, “Single event upset at ground level”, IEEE transactions on Nuclear Science, Vol. 43, No.6, pp. 2742–2750, Dec. 1996.
27. S. Buchner, M. Baze, D. Brown, D. McMorrow, J. Melinger, “Comparison of error rates in combinational and sequential logic”, IEEE transactions on

Nuclear Science. Vol. 44, No.6, pp. 2209-2216, Dec. 1997
28. A.H. Johnston, “Radiation effects in advanced microelectronics technologies”, IEEE transactions on Nuclear Science, Vol. 45, No. 3, pp. 1339-1354,

Jun. 1998.
29. Nikhil Joshi, Jayachandran Sundararajan, Kaijie Wu, Bo Yang, and Ramesh Karri. "Tamper Proofing by Design Using Generalized Involution-Based

Concurrent Error Detection for Involutional Substitution Permutation and Feistel Networks". IEEE TRANSACTIONS ON COMPUTERS, VOL. 55,
NO. 10, OCTOBER 2006.

30. Nikhil Joshi, KaijieW u, Jayachandran Sundararajan, and Ramesh Karri. "Concurrent Error Detection for Involutional Functions With Applications in
Fault-Tolerant Cryptographic Hardware Design". IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, VOL. 25, NO. 6, JUNE 2006.

31. Willi Geiselmann, Adi Shamir, Rainer Steinwandt, Eran Tromer, Scalable hardware for sparse systems of linear equations, with applications to integer
factorization, proc. CHES 2005, LNCS 3659, 131--146, Springer, 2005

32. Chiou, C., Lee, C., Deng, A., and Lin, J. 2006. Concurrent Error Detection in Montgomery Multiplication over GF(2m). IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E89-A, 2 (Feb. 2006), 566-574.

