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Overview of our attack

Our attack applies on a protected CRT-RSA implementation

Provides a full secret key recovery by factorizing the public modulus N

Can be applied on CRT-RSA functions that handles the secret key d:

• Signature (with deterministic padding)
• Decryption

Based on a simple and practicable fault model
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CRT-RSA Countermeasure

Ciet & Joye Algorithm — Practical Fault Countermeasures for Chinese Remaindering
Based RSA [JC05], FDTC 2005

Input: ṁ, {p,q,dp,dq}
Output: S = ṁd mod N
Parameters: κ, l

1. For two κ-bit random integers r1 and r2
(a) p∗ = r1 · p,
(b) q∗ = r2 · q,
(c) iq∗ = (q∗)−1 mod p∗,
(d) N = p · q.

2. Compute
(a) Sp∗ ≡ ṁdp mod p∗ and s2 ≡ ṁdq mod ϕ(r2) mod r2,
(b) Sq∗ ≡ ṁdq mod q∗ and s1 ≡ ṁdp mod ϕ(r1) mod r1.

3. Compute S∗ ≡ Sq∗ + q∗ · iq∗ · (Sp∗ − Sq∗ ) mod p∗

4. Compute
(a) c1 ≡ (S∗ − s1 + 1) mod r1
(b) c2 ≡ (S∗ − s2 + 1) mod r2

5. For a l-bit integer r3, set γ = b (r3·c1+(2l−r3)·c2)

2l c
6. Return S ≡ (S∗)γ mod N
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Fault model

Perturbation of the CRT-RSA signature
• Transient byte fault on Sp∗

The faulty result ˆSp∗ can be model as:

ˆSp∗ = Sp∗⊕ ε

where ε = R8 · 28i , R8 is a random byte value and i ∈ [[0; (n/2)+κ
8 − 1]]

Then, the fault spreads over the computation:

• During the CRT Recombination
• Computation of the check values and gamma
• Final signature
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Faulty Execution

Ciet & Joye Algorithm

Input: ṁ, {p,q,dp,dq}
Output: S = ṁd mod N
Parameters: κ, l

1. For two κ-bit random integers r1 and r2
(a) p∗ = r1 · p,
(b) q∗ = r2 · q,
(c) iq∗ = (q∗)−1 mod p∗,
(d) N = p · q.

2. Compute
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4. Compute
(a) c1 ≡ ( S∗ −s1 + 1) mod r1
(b) c2 ≡ ( S∗ −s2 + 1) mod r2

5. For a l-bit integer r3, set γ = b (r3·c1+(2l−r3)·c2)

2l c
6. Return S ≡ (S∗)γ mod N
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Parameters: κ, l

1. For two κ-bit random integers r1 and r2
(a) p∗ = r1 · p,
(b) q∗ = r2 · q,
(c) iq∗ = (q∗)−1 mod p∗,
(d) N = p · q.

2. Compute
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(a) ĉ1 ≡ ( Ŝ∗ −s1 + 1) mod r1
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3. Compute Ŝ∗ ≡ Sq∗ + q∗ · iq∗ · ( ˆSp∗−Sq∗ ) mod p∗

4. Compute
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Fault Analysis

Consequences of the fault

The faulty result ˆSp∗ has been modeled as:

ˆSp∗ = Sp∗⊕ R8 · 2
8i
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ĉ1 ≡ (Ŝ∗ − s1 + 1) mod r1

≡ 1 + R8 · 2
8i mod r1

≈ 1 + R8 · 2
8i

c2 ≡ (Ŝ∗ − s2 + 1) mod r2
≡ 1 mod r2

So, the erroneous exponent γ̂ can be written as:

γ̂ = b
(r3 · ĉ1 + (2l − r3) · c2)

2l
c

= b
R8 · r3 · 28i

2l
c + 1
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Fault Analysis

Bit distribution of R8 · r3 · 28i

Result of the right shift by l bits if l > 8i:

Result of the right shift by l bits if l < 8i and l < κ:
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Fault Analysis

Bit distribution of R8 · r3 · 28i

Result of the right shift by l bits if l > 8i:

Result of the right shift by l bits if l < 8i and l < κ:

⇒ γ̂ is a random value located on LSB or MSB.
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Fault Analysis

First, one can advantageously notice that:

Ŝe mod N = ṁd·e·γ̂ mod N

= ṁγ̂ mod N

Then, the attacker tries to find γ̂’s value to factorize the public modulus N

Attack algorithm

1. The attacker chooses a candidate value for γ̂
2. The attacker computes:

q′ = gcd
“
(Ŝe − ṁγ̂) mod N , N

”
3. Hence,

(a) if q′ = 1, then the attacker tries again for another candidate,
(b) q′ 6= 1, then q′ is a prime factor of N.
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Performance

Success probability for a fault that suits the model

Pr[success] = Pr
h
ĉ1 ≈ 1 + R8 · 28i & γ̂ is recoverable by brute force

i
= Pr

h
1 + R8 · 28i < r1 & length(γ̂) < Bf

i

For n = 1024 bits, κ = l = 80 bits and Bf = 40 bits

• Pr(success) ≈ 5,4% for a suitable fault
• The success probability increases by lengthening the brute force search

For 83 suitable faults, the success rate is bigger than 99%
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• The success probability increases by lengthening the brute force search

For 83 suitable faults, the success rate is bigger than 99%
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Conclusion

The proposed fault model can be extended to a less restrictive one

The attack has been extensively simulated using GMP Library

This attack works against a protected CRT-RSA implementation . . .

. . . but it can be avoided by

• Forcing the modular reduction during ĉ1computation
• Replacing the final step by the proposed variant and returning

S = (γ · S∗ ⊕ (γ − 1) · r)

Practical Fault Countermeasures for Chinese Remaindering Based RSA [JC05],
FDTC 2005
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Conclusion

Thank you for your attention !
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