

Improved Differential Fault Analysis on CLEFIA

<u>Junko Takahashi</u> and Toshinori Fukunaga NTT Information Sharing Platform Laboratories, JAPAN

> FDTC 2008 Washington DC, USA August 10

Outline

- Background
- Previous Study
 - Structure of CLEFIA
 - General DFA Method
 - Chen's Attack
- Proposed Attack
 - Attack Method
 - Simulation Results
- Conclusions

Background

- CLEFIA 128-bit block cipher developed by SONY Corporation in 2007.
 - Small implementation size and high speed utilizing characteristic structure
- Differential fault analysis (DFA) on CLEFIA was first proposed by Chen et al. in 2007.
 - Simply applied attack against DES to CLEFIA
 - 18 pairs needed to obtain 128-bit key

Can we develop more efficient attack using characteristic of CLEFIA structure ?

Background

- CLEFIA 128-bit block cipher developed by SONY Corporation in 2007.
 - Small implementation size and high speed utilizing characteristic structure
- Differential fault analysis (DFA) on CLEFIA was first proposed by Chen et al. in 2007.
 - Simply applied attack against DES to CLEFIA
 - 18 pairs needed to obtain 128-bit key

Result

Comparison of attack efficiency for 128-bit key

	No. of pairs of correct & faulty ciphertexts	No. of fault injection points	Calculation time on Xeon 3GHz PC
Proposed attack	2	2	average 3 min
Chen's attack (in 2007)	18	6	< 1 sec

Background Previous Study Structure of CLEFIA General DFA Method Chen's Attack Proposed Attack Attack Method Simulation Results Conclusions

Structure of CLEFIA

- 4-branch generalized Feistel network
- 18 rounds for 128-bit key

General DFA on a S-box

General DFA on Feistel Structure

10

12

14

Background Previous Study Structure of CLEFIA General DFA Method Chen's Attack Proposed Attack Attack Method Simulation Results Conclusions

Key Point of Proposed Attack

15

Utilize 4-branch structure with 32-bit data lines

- We can obtain 6 round keys by utilizing the fault propagation of two fault injections.
- The space of candidates for round key is small and we can obtain a 128-bit key within a practical time.

Fault Propagation

NTT Information Sharing Platform Laboratories

16

Fault Propagation

NTT Information Sharing Platform Laboratories

17

Step1: Obtain <RK₃₅>

Known value

18

Step1: Obtain <RK₃₅> (2)

• Average space of candidate for RK_{35} is $2^{4.76}$

Step2: Obtain <RK₃₅, RK₃₂⊕WK₃>

Known value Guessed Value calculated from $\langle RK_{35} \rangle$ and $\langle RK_{34} \rangle$

Step2: Obtain $\langle RK_{35}, RK_{32} \oplus WK_{3} \rangle$ (2)

Solve equation using candidates for RK_{35}

 $\langle RK_{32} \oplus WK_3 \rangle$

Step2: Obtain $\langle RK_{35}, RK_{32} \oplus WK_{3} \rangle$ (2)

22

• Obtain candidates for combination $(RK_{35}, RK_{32} \oplus WK_{3})$

Step2: Obtain < RK_{35}, RK_{32} \oplus WK_{3} > (3)

23

Some candidates for RK_{35} is rejected.

Step2: Obtain < RK_{35}, RK_{32} \oplus WK_{3} > (4)

24

• Average space of candidates for $(RK_{35}, RK_{32} \oplus WK_{3})$

Step3: Obtain <RK₃₅,**RK**₃₄,**RK**₃₂ ⊕ **WK**₃,**RK**₃₁ >

Known value

Guessed values calculated from $\langle RK_{32} \oplus WK_3 \rangle$ and $\langle RK_{33} \oplus WK_2 \rangle$

25

Step3: Obtain <RK₃₅,**RK**₃₄,**RK**₃₂**⊕WK**₃,**RK**₃₁> (2)

26

• Average candidate space for $(RK_{35}, RK_{34}, RK_{32} \oplus WK_{3}, RK_{31})$ is $2^{9.51}$

Total Brute-Force Search Space

• Average candidate space for $(RK_{35}, RK_{34}, RK_{32} \oplus WK_{3}, RK_{31})$ is $2^{9.51}$

- Also, average candidate space for $(RK_{35}, RK_{34}, RK_{33} \oplus WK_{2}, RK_{30})$ is also $2^{9.51}$
- Therefore, the total average space is $2^{19.02}$

We need average a 19.02-bit brute-force search to obtain 128-bit key !

Attack Conditions (1)

- Attacker can obtain two pairs of correct and faulty ciphertexts.
 - He does not need to know the value of the plaintext.

Attack Conditions (2)

- Attacker must randomly corrupt a total of 4bytes of the input in the 16th round.
 - He does not need to know value of faults.
 - He can choose the convenient ways of fault injection depended on devices.

Simulation Results (B-F Space)

Histogram for 2000 samples

Simulation Results (Time)

Histogram for 2000 samples

33

Background Previous Study Structure of CLEFIA General DFA Method Chen's Attack Proposed Attack Attack Method Simulation Results Conclusions

Conclusion

Developed efficient DFA on CLEFIA using its 4-branch structure with 32-bit data lines

Requires 2 pairs of correct and faulty ciphertexts

Average calculation time to obtain 128-bit key is about 3 minutes

