Tate Pairing with Strong Fault Resiliency

E. Ozturk, G. Gaubatz and B. Sunar
Worcester Polytechnic Institute
September 10, 2007

FDTC 2007
Vienna, Austria
Outline

- Identity Based Cryptography
- Tate Pairing
- A Fault Attack on Tate Pairing
- Robust Codes
- Our Scheme
- Analysis
Identity Based Cryptography

- Proposed by Shamir in 1984
- Idea: User's identity plays the role of public key
 - Reduce the amount of computations
 - Simplify key management
 - Simplify public-key infrastructure
Identity Based Cryptography

- First IBE Scheme with proof of security: Boneh-Franklin in 2001
 - Based on pairing algorithms
 - Triggered a rapid increase in the amount of research for pairing based cryptography
Pairing Based Cryptography

- Generally, Tate or Weil pairings are utilized.
- Tate pairing seems to be of particular interest, improved by Duursma and Lee.
- Kwon improved the algorithm further, known as Kwon-BGOS Algorithm.
- We are interested in Kwon-BGOS Algorithm for parameterisation purposes.
Tate Pairing

- A bilinear map between groups G_1 and G_T

$$e : G_1 \times G_1 \rightarrow G_T$$
Tate Pairing

- **Kwon-BGOS Algorithm**
 - Compute $e(P,Q)$ from $P=(x_1,y_1)$ and $Q=(x_2,y_2)$

Input: points $P = (x_1, y_1)$, $Q = (x_2, y_2) \in E \pm [l] (GF(3^m))$

Output: $f_P(\phi(Q)) \in F_{q^6}^*/(F_{q^6}^*)^l$

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>$f := 1$</td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td>$x_2 := x_2^3$</td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td>$y_2 := y_2^3$</td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td>$d := \pm m \pmod 3$</td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td>for i from 1 to m</td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td>$x_1 := x_1^9$</td>
<td></td>
</tr>
<tr>
<td>7:</td>
<td>$y_1 := y_1^9$</td>
<td></td>
</tr>
<tr>
<td>8:</td>
<td>$\mu := x_1 + x_2 + d$</td>
<td></td>
</tr>
<tr>
<td>9:</td>
<td>$\lambda := y_1 y_2 \sigma - \mu^2$</td>
<td></td>
</tr>
<tr>
<td>10:</td>
<td>$g := \lambda - \mu \rho - \rho^2$</td>
<td></td>
</tr>
<tr>
<td>11:</td>
<td>$f := f^3$</td>
<td></td>
</tr>
<tr>
<td>12:</td>
<td>$f := f \cdot g$</td>
<td></td>
</tr>
<tr>
<td>13:</td>
<td>$y_2 := -y_2$</td>
<td></td>
</tr>
<tr>
<td>14:</td>
<td>$d := d + 1 \mod 3$</td>
<td></td>
</tr>
<tr>
<td>15:</td>
<td>return $f q^3 - 1$</td>
<td></td>
</tr>
</tbody>
</table>
A Fault Attack on Tate Pairing

- Security issues are emerging with the increase in the number of implementations.
- Page et. al. investigated a fault attack on Duursma-Lee Tate Pairing Algorithm
A Fault Attack on Tate Pairing

- Attack Objective: From the result $R = e(P,Q)$, and with knowledge of Q, find P
 - Manipulate the loop counter
 - Extract one factor of the product, then recover P parameters.
Tate Pairing Security

- New types of attacks will be discovered
- To provide the highest level of assurance, the entire system needs to be protected with a robust error detection mechanism.
Robust Codes

- Karpovsky and Taubin introduced a novel family of non-linear systematic error detecting codes

- Let V be a linear p-ary (n,k) code with $n < 2k$ and $\text{rank}(P) = r = n-k$. Then

$$C_v = \{ x, w \mid x \in \mathbb{F}_{p^k}, w = P x^2 \in \mathbb{F}_{p^r} \}$$

- Code C_v is robust if it minimizes the maxima of undetectable errors.
Our objectives:

- Protect the arithmetic operations used in a Tate pairing computation against a sufficiently large class of error patterns.
- Keep the overhead in performance low.
Our Scheme

- We built our error detection scheme on arithmetic operations on GF(3^{6m})
 - Less overhead than applying on GF(3^{m})
 - Easier implementation.
- Kwon-BGOS algorithm includes multiplication and cubing in GF(3^{6m}). We applied robust codes on both operations.
Our Scheme

- We derived a modified construction from robust codes of Karpovsky and Taubin, while maintaining robustness properties.
- The original robust codes were defined over $\text{GF}(p^k)$, we extended the definition to robust codes defined over field extensions $\text{GF}(q^{6m})$, with $p=q^m$ and $k=6$.
Our Scheme

A non-zero error on a codeword will not be detected if and only if it satisfies the error masking equation:

$$Pf^2 + e_w = Pf + e_f^2$$

Let V' be a linear q-ary parity code ($q = p^m$, $p > 2$ is a prime) with $n = k + 1$ and check matrix $H = [P|I]$ with $\text{rank}(P) = 1$. Then $C_{V'} = \{(f, w) | f \in GF(q^k), w = (Pf)^2 \in GF(q)\}$.
- possible errors: 3^7m
 - undetected errors: 3^5m
 - reliably detected errors: $3^6m - 3^5m$
 - errors detected with prob. $1-3^{-m}$: $3^7m - 3^6m$

- Probability of detecting an error: $1-3^{-m}$
Robust GF(3^{6m}) Arithmetic

- The elements of GF(3^{6m}) are represented in the basis:
 \[\{1, \sigma, \rho, \sigma \rho, \rho^2, \sigma \rho^2\} \]
- satisfying:
 \[\sigma^2 - \rho = \rho^3 - \rho = 0 \in GF(3^{6m}) \]
Multiplication in GF(3^{6m})

\[
\begin{align*}
 f &= f_0 + f_1 \cdot \sigma + f_2 \cdot \rho + f_3 \cdot \sigma \rho + f_4 \cdot \rho^2 + f_5 \cdot \sigma \rho^2 \\
 g &= g_0 + g_1 \cdot \sigma + g_2 \cdot \rho - \rho^2 \quad (g_3 = g_5 = 0, g_4 = -1) \\
 r &= f \cdot g
\end{align*}
\]

We pick a simple parity code and apply the robust approach:

\[
\begin{align*}
 w_f &= (f_0 + f_1 + f_2 + f_3 + f_4 + f_5)^2 \\
 w_g &= (g_0 + g_1 + g_2 - 1)^2 \\
 w_r &= w_f w_g + T_1^2 + T_2
\end{align*}
\]

where

\[
\begin{align*}
 T_1 &= f_1 g_1 + f_3 g_1 + f_4 g_1 + f_4 g_2 + f_5 g_2 \\
 &\quad - f_2 - f_3 - f_4 - f_5 \\
 T_2 &= 2 \cdot (f_1 g_1 + f_3 g_1 + f_4 g_1 + f_4 g_2 + f_5 g_2 \\
 &\quad - f_2 - f_3 - f_4 - f_5) \cdot \sqrt{w_f} \sqrt{w_g}
\end{align*}
\]
Cubing in GF(3^{6m})

\[
f = f_0 + f_1 \cdot \sigma + f_2 \cdot \rho + f_3 \cdot \sigma \rho + f_4 \cdot \rho^2 \\
+ f_5 \cdot \sigma \rho^2
\]

\[
f^3 = f_0^3 + f_1^3 \cdot \sigma^3 + f_2^3 \cdot \rho^3 + f_3^3 \cdot \sigma^3 \rho^3 + f_4^3 \cdot \rho^6 \\
+ f_5^3 \cdot \sigma^3 \rho^6
\]

We pick a simple parity code and apply the robust approach:

\[
w_f = (f_0 + f_1 + f_2 + f_3 + f_4 + f_5)^2
\]

\[
w_{f^3} = w_f^3 + T_3^2 + T_4
\]

where

\[
T_3 = (f_1^3 + f_2^3 + f_5^3)
\]

\[
T_4 = 2 \cdot (f_0^3 + f_1^3 + f_2^3 + f_3^3 + f_4^3 + f_5^3) \cdot
\]

\[
(f_1^3 + f_2^3 + f_5^3)
\]
Performance Analysis

- Complexity of $GF(3^{6m})$ operations for standard and robust implementations:

<table>
<thead>
<tr>
<th>$GF(3^{6m})$ operations</th>
<th># $GF(3^m)$ operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Implement.</td>
<td>Robustness Overhead</td>
</tr>
<tr>
<td>Mult.</td>
<td>18 muls</td>
</tr>
<tr>
<td>Cube</td>
<td>6 cube</td>
</tr>
</tbody>
</table>

- The robustness approach causes an area overhead of about 50%, without an impact on the latency.
Conclusion

- The proposed scheme provides quantifiable levels of protection in a well defined strong attacker model.
- We believe further reduction of the area overhead is desired and possible.
- The proposed technique should be considered only as a proof of concept implementation.