
Generic Analysis of
Small Cryptographic Leaks

Adi

Shamir
Computer Science Dept
The Weizmann Institute

Israel
(Joint work with Itai

Dinur)

Side Channel Attacks
Are extremely powerful, and in many cases
are the only practical way to break well
designed cryptosystems

Had been studied for more than a decade in
academia, and for much longer by others

Many types of side channel attacks are
known, but each one needs different physical
and mathematical techniques

Still lacks a satisfactory unifying framework

The typical Scenario Considered So Far:
A new type of potential leakage is discovered, which
provides a very small amount of very indirect
information about the cryptographic key

Specialized techniques have to be developed to
extract the full key from a large number of
measurements of this new source of information

To apply it to a particular device, detailed information
about the physical and logical implementation of the
cryptosystem in that device is usually required

The success of each attack is extremely sensitive to
the existence of unknown countermeasures

My Goal in This Talk:

To develop a generic way how to analyze any
new type of side channel leakage

Applying the attack will not require detailed
knowledge of the physical and logical
implementation of the cryptosystem

However, its success will not be guaranteed,
and will have to be tested experimentally in
each case

Examples of Possible scenarios:

We are given a chip, and can probe any wire in
it. However, we have no idea what kind of data
is passing through the wire during each cycle
We can measure the total power consumption of
the chip, but do not know how this power
consumption is related to the instructions
executed by the processor or to the data
operated upon
We can use a tiny antenna to measure the RF
field near the surface of the chip, but do not
know how this field is related to the crypto key

The new CUBE ATTACK (Dinur&Shamir):

Is a very general key derivation algebraic attack

Generalizes and improves some previous
summation-based attacks such as Integral
Attacks and Vielhaber’s AIDA

Was recently used to break the full version of
the Grain-128 stream cipher

As we show in this talk, cube attacks are ideal
generic tools which can be applied in principle to
any type of side channel leakage

Any cryptographic scheme can be
described by multivariate polynomials:

Each computed bit can be described by some
multivariate polynomial P(x1,…xn,v1,…vm) over
GF(2) of secret variables xi (key bits), and public
variables vj (plaintext bits in block
ciphers/MAC’s, IV bits in stream ciphers)

x1 x2 … x3 v1 v2… v3
secret public

P

The main characteristics of
cryptographically defined polynomials:

We consider only multivariate polynomials
in fully expanded Algebraic Normal Form

These polynomials are typically huge, and
can not be explicitly defined, stored, or
manipulated with a feasible complexity

The data available to the attacker will
typically be insufficient to interpolate
their coefficients from their output values

Black box multivariate polynomials:
The only realistic way to deal with these polynomials

is as black box polynomials,

which can be evaluated
 on any (fully specified) set of secret and public

inputs:

1 0 … 0 1 1… 0

Fixed
key bits

Tweakable
Plaintext bits

P

The typical problem of
algebraic cryptanalysis:

Solve a system of black box polynomial equations
over GF(2):

P1

(x1

…xn

v1
1

…v1
m

)=0
P2

(x1

…xn

v2
1

…v2
m

)=1
P3

(x1

…xn

v3
1

…v3
m

)=0
…

in which the fixed key variables xi

are unknown, and
the various plaintext/IV variables vj

i

are known
The problem is NP-hard and exceedingly difficult in
practice, even with explicitly given polynomials

The new cube attack:

Can be applied directly to arbitrary black
box polynomials, even when they are huge

Can be applied to unknown or partially known
cryptographic schemes given as black boxes

Can be applied automatically without careful
preanalysis of the properties of the scheme

Is provably successful when the black box
polynomials are sufficiently random

Cube attacks have two phases:
A preprocessing phase (via simulation):
–

The cryptosystem is given as a black box.
The attacker can obtain one bit of output
for any chosen key and plaintext.

The online phase (via eavesdropping):
–

The cryptosystem is given as a black box,
with the key set to a secret fixed value.
The attacker can obtain one bit of output
for any chosen plaintext.

The complexity of the attack:

For random polynomials of degree d in n input
variables over GF(2), the complexity of cube
attacks is O(n2d-1+n2) bit operations, which is
polynomial in the key size n (!)

Bits of information leaking out during the
early stages of the encryption process are
likely to be described by low degree
polynomial functions in the plaintext and key
bits, making the attack feasible

A typical example of a cube attack:

To demonstrate the attack, consider the
following dense master polynomial of
degree d=3 over three secret variables
x1,x2,x3 and three public variables v1,v2,v3:

P(v1

,v2

,v3

,x1

,x2

,x3

)=
v1

v2

v3

+v1

v2

x1

+v1

v3

x1

+v2

v3

x1

+v1

v2

x3

+v1

v3

x2

+
v2

v3

x2

+v1

v3

x3

+v1

x1

x3

+v3

x2

x3

+x1

x2

x3

+v1

v2

+
v1

x3

+v3

x1

+x1

x2

+x2

x3

+x2

+v1

+v3

+1

The effect of partial substitution:

Substituting v1=1 and v2=1, we get a
derived symbolic polynomial in the
remaining variables x1,x2,x3 and v3:

P(v1

,v2

,v3

,x1

,x2

,x3

)=
x1

+x2

+v3

x1

+v3

x3

+x1

x2

+x2

x3

+x1

x3

+v3

x2

x3
 +x1

x2

x3

+ 1

The Boolean cube:
Each corner of the Boolean cube will
have 3 interpretations

in cube attacks:

The Boolean cube:
An assignment of 0/1 values

to some

subset of the public vj

variables

000

011

100

001
111

110

101

010

The Boolean cube:
The simplified symbolic form

of the

corresponding derived polynomial

P7
P1

P3

P4P0
P2 P6

P5

The Boolean cube:

The 0/1 value

of this derived polynomial
when all the other variables are set to
their public and secret values

0

1

0

0
1

1

1

0

The Boolean cube:

We sum over GF(2) both the symbolic
forms

of the derived polynomials and their

0/1 values

which occur in the vertices of
various (potentially overlapping) subcubes

The summations:

The summations:

The summations:

In our small example:

Summing the 4 derived polynomials
with v1=0, all the nonlinear terms
disappear and we get x1+x2; summing
the 4 derived polynomials with v2=0 we
get x1+x2+x3; and summing the four
derived polynomials with v3=0 we get
x1+x3
The sums of polynomials equated to
their summed values give rise to three
linear equations in the three secret
variables xi, which can be easily solved

Why did all

the nonlinear products of secret
variables disappear from the sum?

All the terms are the products of at
most 3 of the 6 xi and vj variables

We sum over all the values of two vj’s

Any term in the master polynomial P
such as x1x2v1 which contains the
nonlinear product of two or more xi in
it, is missing at least one of the vj that
we sum over, and is thus added an even
number of times modulo 2 to the sum

Isn’t cube attack just a differentiation?
 No wonder that it reduces the degree…

However, each terms has two types of variables:
v1v2v4x2x3x4

What we want: to reduce the x-degree to linear

What we can do: to reduce the v-degree by
differentiation

Differentiating the term above wrt v1v2 gives
v4x2x3x4; wrt v1v3 gives 0; neither has x-degree 1.

Consider a general polynomial in n secret
and n public variables:

Total x-degree

Total v-degree

n

n

Each term has an
x-degree and a
v-degree

Differentiating wrt

public variables reduce v-degrees

Total x-degree

Total v-degree

n

n

Each term moves
downwards by 1 or
all the way to zero

Differentiating wrt

public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-1

After differentiating
with one vi

variable

Differentiating wrt

public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-2

After differentiating
with two vi

variables

A general polynomial will still have x-degree of n
 even after differentiating wrt

all its public variables

Total x-degree

Total v-degree

n
0

After differentiating
with all vi

variables

In cube attacks, we consider general polynomials of
total degree d<n

in all the public and secret variables

In cube attacks, we consider general polynomials of
total degree d<n

in all the public and secret variables

Total x-degree

Total v-degree

d

d

Our polynomials have
triangular shape:

Differentiating with respect to one

public variable:

Total x-degree

Total v-degree

d-1

d-1

Moving downwards
looks the same as
moving to left:

Differentiating with respect to i

public variables:

Total x-degree

Total v-degree

d-i

d-i

Moving downwards
looks the same as
moving to left:

Differentiating with respect to d-1

public variables:

Total x-degree

Total v-degree

1

1

Going almost all the way
makes the polynomial

 linear

in its secret
variables:

How to find the indices to sum over:

The derived polynomials cannot be explicitly
generated or symbolically summed from the
master polynomial with feasible complexity

We use the preprocessing phase (which is
executed only once for each cryptosystem)
to experimentally find the best choice of
summation indices. Note that during
preprocessing, the attacker is allowed to
choose both the key and IV variables

Robust Cube Attacks:

Cube attacks typically XOR millions of bits
in order to compute the right hand side of
each linear equation

This is ok when the bits are high quality
bits obtained from actual ciphertexts

This is problematic when the bits have even
0.0001% noise, and thus even SMALL AMOUNT OF NOISE

is a BIG PROBLEM in side channel attacks

Robust Cube Attacks:

Fortunately, the attacker often knows
which side channel information bits are
potentially problematic

The measured information is usually analog,
whereas the information bits are digital

Measurements which are near the
quantization threshold are likely to contain
most of the measurement errors

Robust Cube Attacks: The New Ingredients

Cube attacks can usually provide an
overdefined systems of linear equations by
using a larger number of subcubes (random
polynomials have exponentially many
choices of summation indices, and we need
only linearly many to solve for the key bits)

Furthermore, the subcubes can overlap and
reuse the same measured values, taking
into account that they are the same value
everywhere, even though they are unknown

Robust Cube Attacks: The New Ingredients

The error correction problem is related to
erasure codes, which provide information
such as 011?10010?01101001110?100001

Problem: By eliminating the problematic
measurements, we lose the perfect cube
structure, and thus the summation of the
algebraic equations over just the good
values will not result in linear equations!

Robust Cube Attacks:

The robust attack can assign a new variable
name zi to each measurement which is
known to be potentially unreliable

The cube summation will have a right hand
side which is the XOR of all the good bit
values in the cube, plus the sum of all the
variables which occurred in the subcube:

x2+x5+x6+x9=1+z3+z7+z8

Robust Cube Attacks:

The new trick: Use the numerous trivial
equations of the form 0=0 obtained by
summing over too many public variables

0 = 1+z3+z7+z8

They are useless in order to find the key,
but great for correcting all the errors.

Robust Cube Attacks: The New
Ingredients

In standard cube attacks, we get linear equations
from the original degree d polynomial by summing
over d-1 dimensional cubes, which differentiate
the multivariate polynomial d-1 times

Consider the collection of all subsets of d-1 vars:

Robust Cube Attacks: The New
Ingredients

However, we want n rather than one linear
equation, so we collect data from a slightly larger
cube of about n+log(n) possible variables

Robust Cube Attacks: The New
Ingredients

To get a huge set
of trivial
equations, we
further enlarge
the cube of data
points we collect:

Robust Cube Attacks: The New
Ingredients

We use a larger cube of dimension k. There are
about 2k-kd subcubes of dimension >d within it

Assuming that there is a fixed fraction e of
known error locations in the large cube, there is a
total of about e2k new variables that we have to
add

Simple computation shows that for random
polynomials we can tolerate any e <1 by making k
sufficiently large

Leakage Attacks on Block Ciphers:

Block ciphers are typically iterated,
applying the same operations in each round
to different values

Any type of physical leakage is likely to
repeat itself in each round, and all these
values will be available to the cryptanalyst

Leakage Attacks on Block Ciphers:

The simplest type of leakage we consider is
a single state bit, obtained e.g., by probing a
single register cell or a single wire

Another type of leakage is a single bit which
is a simple function of many state bits, e.g.,
whether a carry occurred during an addition
operation

More complicated types of leakage can be
multibit functions such as the Hamming
weight of a byte written into memory

Information Available to the Attacker:

In block
ciphers:

In stream
ciphers:

In leakage
attacks:

Which bits of information are useful?

Single bits of information in successive
rounds are difficult to relate to each other

Our approach will be to relate a single bit of
information to the fully known plaintext or
ciphertext

If the distance between them is too small,
only few key bits can be typically extracted

If the distance between them is too large, it
is typically too difficult to get the key info

A Typical Example: AES-128

A single bit of state data available after the
initial whitening step P+K0 reveals exactly one
key bit

A single bit of state data available after the
first round is a function of one bit from K1,
together with at most 32 bits from K0

A single bit of state data after the second
round depends on all the 128 key bits

A Typical Example: AES-128

Our attack will only use the plaintext and a
single state bit leaked from the end of the
second round in multiple encryptions

It will ignore the known ciphertext (which is
too far from the state bit we analyze)

It will ignore the state bits leaked during
earlier/later rounds, since they add little
information/are too difficult to analyze

A Typical Example: AES-128

No previous type of attack
(exhaustive/statistical/differential/linear)
seems to be applicable in this scenario

The new attack is completely practical, requiring
about 235 time for complete key recovery

The mathematical part of the attack was
simulated successfully on a single PC in a few
minutes

Applying the cube leakage attack to AES:

The preprocessing identified a collection
of n=128 cubes with d=28 to sum over

During the on-line attack on a particular
key, we have to encrypt 27 sets of 228

chosen plaintexts, and sum up the leaked
bit in each set to determine the right
hand side of each linear equation

The total complexity of the attack is 235

Cube leakage attacks on SERPENT:

Complete key avalanche in SERPENT occurs
only at the end of the third round, due to the
smaller 4-bit S-boxes and the weaker
interaction between the state and key bits

Since the degree of the polynomial grows more
slowly in SERPENT than in AES, we were able
to find n=128 cubes of dimension d=11

The complexity of the attack is only 27x211=218

Maxterms

for 3-round Serpent:

Conclusions:
Cube attacks seem to be ideal generic tools in
leakage attacks

They have the unique property that they can
be applied even to poorly understood types of
leakage from unknown implementations of
unknown cryptosystems

By using their robust version, they can be
applied even when most of the measurements
are known to be unreliable

	Generic Analysis of �Small Cryptographic Leaks
	Side Channel Attacks
	The typical Scenario Considered So Far:
	My Goal in This Talk:
	Examples of Possible scenarios:
	The new CUBE ATTACK (Dinur&Shamir):
	Any cryptographic scheme can be described by multivariate polynomials:
	The main characteristics of cryptographically defined polynomials:
	Black box multivariate polynomials:
	The typical problem of algebraic cryptanalysis:
	The new cube attack:
	Cube attacks have two phases:
	The complexity of the attack:
	A typical example of a cube attack:
	The effect of partial substitution:
	The Boolean cube:
	The Boolean cube:
	The Boolean cube:
	The Boolean cube:
	The Boolean cube:
	The summations:
	The summations:
	The summations:
	In our small example:
	Why did all the nonlinear products of secret variables disappear from the sum?
	Isn’t cube attack just a differentiation?�No wonder that it reduces the degree…
	Consider a general polynomial in n secret and n public variables:
	Differentiating wrt public variables reduce v-degrees
	Differentiating wrt public variables reduce v-degrees
	Differentiating wrt public variables reduce v-degrees
	A general polynomial will still have x-degree of n even after differentiating wrt all its public variables
	In cube attacks, we consider general polynomials of total degree d<n in all the public and secret variables
	In cube attacks, we consider general polynomials of total degree d<n in all the public and secret variables
	Differentiating with respect to one public variable:
	Differentiating with respect to i public variables:
	Differentiating with respect to d-1 public variables:
	How to find the indices to sum over:
	Robust Cube Attacks:
	Robust Cube Attacks:
	Robust Cube Attacks: The New Ingredients
	Robust Cube Attacks: The New Ingredients
	Robust Cube Attacks:
	Robust Cube Attacks:
	Robust Cube Attacks: The New Ingredients
	Robust Cube Attacks: The New Ingredients
	Robust Cube Attacks: The New Ingredients
	Robust Cube Attacks: The New Ingredients
	Leakage Attacks on Block Ciphers:
	Leakage Attacks on Block Ciphers:
	Information Available to the Attacker:
	Which bits of information are useful?
	A Typical Example: AES-128
	A Typical Example: AES-128
	A Typical Example: AES-128
	Applying the cube leakage attack to AES:
	Cube leakage attacks on SERPENT:
	Maxterms for 3-round Serpent:
	Conclusions:

