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Side Channel Attacks
Are extremely powerful, and in many cases 
are the only practical way to break well 
designed cryptosystems

Had been studied for more than a decade in 
academia, and for much longer by others

Many types of side channel attacks are 
known, but each one needs different physical 
and mathematical techniques

Still lacks a satisfactory unifying framework



The typical Scenario Considered So Far:
A new type of potential leakage is discovered, which 
provides a very small amount of very indirect 
information about the cryptographic key

Specialized techniques have to be developed to 
extract the full key from a large number of 
measurements of this new source of information

To apply it to a particular device, detailed information 
about the physical and logical implementation of the 
cryptosystem in that device is usually required 

The success of each attack is extremely sensitive to 
the existence of unknown countermeasures



My Goal in This Talk:

To develop a generic way how to analyze any 
new type of side channel leakage

Applying the attack will not require detailed 
knowledge of the physical and logical 
implementation of the cryptosystem

However, its success will not be guaranteed, 
and will have to be tested experimentally in 
each case 



Examples of Possible scenarios:

We are given a chip, and can probe any wire in 
it. However, we have no idea what kind of data 
is passing through the wire during each cycle
We can measure the total power consumption of 
the chip, but do not know how this power 
consumption is related to the instructions 
executed by the processor or to the data 
operated upon
We can use a tiny antenna to measure the RF 
field near the surface of the chip, but do not 
know how this field is related to the crypto key



The new CUBE ATTACK (Dinur&Shamir):

Is a very general key derivation algebraic attack

Generalizes and improves some previous 
summation-based attacks  such as Integral 
Attacks and Vielhaber’s AIDA

Was recently used to break the full version of 
the Grain-128 stream cipher

As we show in this talk, cube attacks are ideal 
generic tools which can be applied in principle to 
any type of side channel leakage



Any cryptographic scheme can be 
described by multivariate polynomials:

Each computed bit can be described by some 
multivariate polynomial P(x1,…xn,v1,…vm) over 
GF(2) of secret variables xi (key bits), and public 
variables vj (plaintext bits in block 
ciphers/MAC’s, IV bits in stream ciphers)

x1 x2 … x3 v1 v2… v3
secret public

P



The main characteristics of 
cryptographically defined polynomials:

We consider only multivariate polynomials 
in fully expanded Algebraic Normal Form

These polynomials are typically huge, and 
can not be explicitly defined, stored, or 
manipulated with a feasible complexity

The data available to the attacker will 
typically be insufficient to interpolate
their coefficients from their output values



Black box multivariate polynomials:
The only realistic way to deal with these polynomials 

is as black box polynomials,
 

which can be evaluated
 on any (fully specified) set of secret and public 

inputs:

1 0 … 0 1 1… 0

Fixed 
key bits

Tweakable
Plaintext bits

P



The typical problem of 
algebraic cryptanalysis:

Solve a system of black box polynomial equations
over GF(2): 
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in which the fixed key variables xi
 

are unknown, and 
the various plaintext/IV variables vj

i
 

are known
The problem is NP-hard and exceedingly difficult in 
practice, even with explicitly given polynomials



The new cube attack:

Can be applied directly to arbitrary black 
box polynomials, even when they are huge

Can be applied to unknown or partially known
cryptographic schemes given as black boxes

Can be applied automatically without careful 
preanalysis of the properties of the scheme

Is provably successful when the black box 
polynomials are sufficiently random



Cube attacks have two phases:
A preprocessing phase (via simulation):
–

 
The cryptosystem is given as a black box. 
The attacker can obtain one bit of output 
for any chosen key and plaintext.

The online phase (via eavesdropping):
–

 
The cryptosystem is given as a black box, 
with the key set to a secret fixed value. 
The attacker can obtain one bit of output 
for any chosen plaintext.



The complexity of the attack:

For random polynomials of degree d in n input 
variables over GF(2), the complexity of cube 
attacks is O(n2d-1+n2) bit operations, which is 
polynomial in the key size n (!)

Bits of information leaking out during the 
early stages of the encryption process are 
likely to be described by low degree 
polynomial functions in the plaintext and key 
bits, making the attack feasible



A typical example of a cube attack:

To demonstrate the attack, consider the 
following dense master polynomial of 
degree d=3 over three secret variables 
x1,x2,x3 and three public variables v1,v2,v3:
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The effect of partial substitution:

Substituting v1=1 and v2=1, we get a 
derived symbolic polynomial in the 
remaining variables  x1,x2,x3 and v3:
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The Boolean cube:
Each corner of the Boolean cube will 
have 3 interpretations

 
in cube attacks:



The Boolean cube:
An assignment of 0/1 values

 
to some 

subset of the public vj
 

variables

000

011
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001
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The Boolean cube:
The simplified symbolic form

 
of the 

corresponding derived polynomial

P7
P1

P3

P4P0
P2 P6

P5



The Boolean cube:

The 0/1 value
 

of this derived polynomial 
when all the other variables are set to 
their public and secret values

0

1

0

0
1

1

1

0



The Boolean cube:

We sum over GF(2) both the symbolic 
forms

 
of the derived polynomials and their 

0/1 values
 

which occur in the vertices of 
various (potentially overlapping) subcubes



The summations:



The summations:



The summations:



In our small example:

Summing the 4 derived polynomials 
with v1=0, all the nonlinear terms 
disappear and we get x1+x2; summing 
the 4 derived polynomials with v2=0 we 
get x1+x2+x3; and summing the four 
derived polynomials with v3=0 we get 
x1+x3
The sums of polynomials equated to 
their summed values give rise to three 
linear equations in the three secret 
variables xi, which can be easily solved



Why did all
 

the nonlinear products of secret 
variables disappear from the sum?

All the terms are the products of at 
most 3 of the 6 xi and vj variables

We sum over all the values of two vj’s

Any term in the master polynomial P
such as x1x2v1 which contains the 
nonlinear product of two or more xi in 
it, is missing at least one of the vj that 
we sum over, and is thus added an even 
number of times modulo 2 to the sum



Isn’t cube attack just a differentiation?
 No wonder that it reduces the degree…

However, each terms has two types of variables: 
v1v2v4x2x3x4

What we want: to reduce the x-degree to linear

What we can do: to reduce the v-degree by 
differentiation

Differentiating the term above wrt v1v2 gives 
v4x2x3x4; wrt v1v3 gives 0; neither has x-degree 1.



Consider a general polynomial in n secret 
and n public variables:

Total x-degree

Total v-degree

n

n

Each term has an 
x-degree and a 
v-degree



Differentiating wrt
 

public variables reduce v-degrees

Total x-degree

Total v-degree

n

n

Each term moves 
downwards by 1 or 
all the way to zero



Differentiating wrt
 

public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-1

After differentiating 
with one vi

 

variable



Differentiating wrt
 

public variables reduce v-degrees

Total x-degree

Total v-degree

n

n-2

After differentiating 
with two vi

 

variables



A general polynomial will still have x-degree of n
 even after differentiating wrt

 
all its public variables

Total x-degree

Total v-degree

n
0

After differentiating 
with all vi

 

variables



In cube attacks, we consider general polynomials of 
total degree d<n

 
in  all the public and secret variables



In cube attacks, we consider general polynomials of 
total degree d<n

 
in  all the public and secret variables

Total x-degree

Total v-degree

d

d

Our polynomials have 
triangular shape:



Differentiating with respect to one
 

public variable:

Total x-degree

Total v-degree

d-1

d-1

Moving downwards 
looks the same as 
moving to left:



Differentiating with respect to i
 

public variables:

Total x-degree

Total v-degree

d-i

d-i

Moving downwards 
looks the same as 
moving to left:



Differentiating with respect to d-1
 

public variables:

Total x-degree

Total v-degree

1

1

Going almost all the way 
makes the polynomial

 linear
 

in its secret 
variables:



How to find the indices to sum over:

The derived polynomials cannot be explicitly 
generated or symbolically summed from the 
master polynomial with feasible complexity

We use the preprocessing phase (which is 
executed only once for each cryptosystem) 
to experimentally find the best choice of 
summation indices. Note that during 
preprocessing, the attacker is allowed to 
choose both the key and IV variables



Robust Cube Attacks:

Cube attacks typically XOR millions of bits
in order to compute the right hand side of 
each linear equation

This is ok when the bits are high quality 
bits obtained from actual ciphertexts

This is problematic when the bits have even 
0.0001% noise, and thus even SMALL AMOUNT OF NOISE

is a BIG PROBLEM in side channel attacks



Robust Cube Attacks:

Fortunately, the attacker often knows 
which side channel information bits are 
potentially problematic

The measured information is usually analog,
whereas the information bits are digital

Measurements which are near the 
quantization threshold are likely to contain 
most of the measurement errors 



Robust Cube Attacks: The New Ingredients

Cube attacks can usually provide an 
overdefined systems of linear equations by 
using a larger number of subcubes (random 
polynomials have exponentially many 
choices of summation indices, and we need 
only linearly many to solve for the key bits) 

Furthermore, the subcubes can overlap and 
reuse the same measured values, taking 
into account that they are the same value 
everywhere, even though they are unknown



Robust Cube Attacks: The New Ingredients

The error correction problem is related to 
erasure codes, which provide information 
such as 011?10010?01101001110?100001

Problem: By eliminating the problematic 
measurements, we lose the perfect cube 
structure, and thus the summation of the 
algebraic equations over just the good 
values will not result in linear equations!



Robust Cube Attacks:

The robust attack can assign a new variable 
name zi to each measurement which is 
known to be potentially unreliable

The cube summation will have a right hand 
side which is the XOR of all the good bit 
values in the cube, plus the sum of all the 
variables which occurred in the subcube: 

x2+x5+x6+x9=1+z3+z7+z8



Robust Cube Attacks:

The new trick: Use the numerous trivial 
equations of the form 0=0 obtained by 
summing over too many public variables

0 = 1+z3+z7+z8

They are useless in order to find the key, 
but great for correcting all the errors. 



Robust Cube Attacks: The New 
Ingredients

In standard cube attacks, we get linear equations 
from the original degree d polynomial by summing 
over d-1 dimensional cubes, which  differentiate 
the multivariate polynomial d-1 times

Consider the collection of all subsets of d-1 vars:



Robust Cube Attacks: The New 
Ingredients

However, we want n rather than one linear 
equation, so we collect data from a slightly larger 
cube of about n+log(n) possible variables



Robust Cube Attacks: The New 
Ingredients

To get a huge set 
of trivial 
equations, we 
further enlarge 
the cube of data 
points we collect:



Robust Cube Attacks: The New 
Ingredients

We use a larger cube of dimension k. There are 
about 2k-kd subcubes of dimension >d within it

Assuming that there is a fixed fraction e of 
known error locations in the large cube, there is a 
total of about e2k new variables that we have to 
add

Simple computation shows that for random 
polynomials we can tolerate any e <1 by making k 
sufficiently large



Leakage Attacks on Block Ciphers:

Block ciphers are typically iterated, 
applying the same operations in each round 
to different values

Any type of physical leakage is likely to 
repeat itself in each round, and all these 
values will be available to the cryptanalyst



Leakage Attacks on Block Ciphers:

The simplest type of leakage we consider is 
a single state bit, obtained e.g., by probing a 
single register cell or a single wire

Another type of leakage is a single bit which 
is a simple function of many state bits, e.g., 
whether a carry occurred during an addition 
operation

More complicated types of leakage can be 
multibit functions such as the Hamming 
weight of a byte written into memory



Information Available to the Attacker:

In block
ciphers:

In stream
ciphers:

In leakage
attacks:



Which bits of information are useful?

Single bits of information in successive 
rounds are difficult to relate to each other

Our approach will be to relate a single bit of 
information to the fully known plaintext or 
ciphertext

If the distance between them is too small, 
only few key bits can be typically extracted

If the distance between them is too large, it 
is typically too difficult to get the key info



A Typical Example: AES-128

A single bit of state data available after the 
initial whitening step P+K0 reveals exactly one 
key bit

A single bit of state data available after the 
first round is a function of one bit from K1, 
together with at most 32 bits from K0

A single bit of state data after the second 
round depends on all the 128 key bits



A Typical Example: AES-128

Our attack will only use the plaintext and a 
single state bit leaked from the end of the 
second round in multiple encryptions

It will ignore the known ciphertext (which is 
too far from the state bit we analyze)

It will ignore the state bits leaked during 
earlier/later rounds, since they add little 
information/are too difficult to analyze



A Typical Example: AES-128

No previous type of attack 
(exhaustive/statistical/differential/linear) 
seems to be applicable in this scenario

The new attack is completely practical, requiring 
about 235 time for complete key recovery

The mathematical part of the attack was 
simulated successfully on a single PC in a few 
minutes



Applying the cube leakage attack to AES:

The preprocessing identified a collection 
of n=128 cubes with d=28 to sum over

During the on-line attack on a particular 
key, we have to encrypt 27 sets of 228

chosen plaintexts, and sum up the leaked 
bit in each set to determine the right 
hand side of each linear equation

The total complexity of the attack is 235



Cube leakage attacks on SERPENT:

Complete key avalanche in SERPENT occurs 
only at the end of the third round, due to the 
smaller 4-bit S-boxes and the weaker 
interaction between the state and key bits

Since the degree of the polynomial grows more 
slowly in SERPENT than in AES, we were able 
to find n=128 cubes of dimension d=11

The complexity of the attack is only 27x211=218



Maxterms
 

for 3-round Serpent:



Conclusions:
Cube attacks seem to be ideal generic tools in 
leakage attacks

They have the unique property that they can 
be applied even to poorly understood types of 
leakage from unknown implementations of
unknown cryptosystems

By using their robust version, they can be 
applied even when most of the measurements
are known to be unreliable
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