





Jörn-Marc Schmidt joern-marc.schmidt@iaik.tugraz.at

## Motivation





#### AES & AN+B codes

Problems & Construction

Results



#### Bit-set / bit-flip fault-

#### Random byte-fault

### Transient

#### Permanent

Distance in the local data in the local data in the local data

**Program-flow manipulation** 

Destructive



#### AES & AN+B codes

Problems & Construction

Results





## **AES** – Round Functions

AddRoundKey S<sub>i</sub> = S<sub>i</sub> + K<sub>i,k</sub>



SubBytes  $S_i = A * (S_i^{254} \pmod{x^8 + x^4 + x^3 + x + 1}) + d$ 

ShiftRows  $R_m = R_m * y^m \pmod{y^4+1}$  for m=0..3

MixColumns C<sub>1</sub> = C<sub>1</sub> \* (3y<sup>3</sup>+y<sup>2</sup>+y+2) (mod y<sup>4</sup>+1) for l=0..3

## Standard Embeddings

- Data algebra
  Check algebra
  Operate on
- $F_D$ mod n (e.g. RSA ring) $F_C$ mod r (32+ bits) $(F_D \times F_C)$
- $x \leftarrow$  $CRT(x_D, x_C) \mod n^*r$  $y \leftarrow$  $f(x) \mod n^*r$  $y' \leftarrow$  $f(x_C) \mod r$ Check $y' = y \mod r$





#### Pre-computations only needed once

Detect data manipulations

Detect a change of the algorithm

Detect interchange of variables

#### AES & AN+B codes

#### Problems & Construction

Results





## Problems

Polynomials of degree smaller than 16

Multiplications, log tables?

Non-linear functions, S-box table?

## Construction of a Suitable Code

 $\begin{array}{l} x_{D} : GF(2^{8}) \rightarrow GF(2^{8})[y] / y + a_{1} \\ \\ x_{C} : GF(2^{8}) \rightarrow GF(2^{8})[y] / y + a_{2} \end{array} \right\} GF(2^{8})[y] / y^{2} + c_{1}y + c_{0} : x \\ \end{array}$ 

$$\mathbf{x} = (\mathbf{x}_{\mathsf{D}}\mathbf{i}_{11} + \mathbf{x}_{\mathsf{C}}\mathbf{i}_{21})^*\mathbf{y} + (\mathbf{x}_{\mathsf{D}}\mathbf{i}_{12} + \mathbf{x}_{\mathsf{C}}\mathbf{i}_{22})$$

•Multiplications  $\rightarrow$  GF(2<sup>8</sup>) log tables

SubBytes: Both coefficients contain info about x<sub>D</sub>

## Redundant S-box Lookup

 $t = (x_c i_{21})^* y + (x_c i_{22})$ 

 $(X_{in}i_{21})*y + (X_{in}i_{22})$ 

- Normalize check bytes
- $d = (x_{C}i_{21})^{*}y + (x_{C}i_{22}) +$ Lookup result + correction term
- Re-apply check bytes

 $\mathbf{X} = (\mathbf{S} \mathbf{B} (\mathbf{X}_{\mathbf{f}}) \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}_{\mathbf{f}}} \mathbf{i}$  $(SB(x_D)i_{12} + (x_C + x_{in} + x_{out})i_{22})$  $E(x_{D})$ 

 $x = (SB(x_D)i_{11} + x_{out}i_{21})^*y + (SB(x_D)i_{12} + x_{out}i_{22}) + E(x_D)$ 

## Implementation

Fix 32 input check bytes
Perform dummy encryption
Store check bytes of result

Combine every new plaintext with check bytes
Port check bytes if key changes



#### AES & AN+B codes

Problems & Construction

Results







Bit fault: Codewords have a D<sub>H</sub> of 4

Byte fault: 2 bytes must be changed

Program flow: Every operation alters x<sub>C</sub>

| Order            | 1 <sup>st</sup> | 2 <sup>nd</sup> |
|------------------|-----------------|-----------------|
| Bit-fault        | 100%            | 100%            |
| Byte-fault       | 100%            | 99.6%           |
| Skip instruction | 100%            | 99.6%*          |

# ATMega128 C implementation Multiplications in Assembly



| Operation                             | # Cycles |
|---------------------------------------|----------|
| AddRoundKey                           | 305      |
| SubBytes                              | 4 235    |
| ShiftRows+MixColumns                  | 5 717    |
| Encryption                            | 98 322   |
| Plaintext transformation              | 9 852    |
| Ciphertext inverse transformation     | 7 933    |
| Redundant key schedule (precomp.)     | 120 657  |
| Redundant S-box generation (precomp.) | 345 648  |

Performance



- Genelle et. al: Usage of digest values
- 10<sup>6</sup> cycles with on the fly key schedule, but less RAM
- ■1<sup>st</sup> order: 100%, 2<sup>nd</sup> order: 2<sup>8</sup> vs. ~2<sup>12</sup>
- No program flow protection
- Both schemes are extendable towards higher orders

#### AES & AN+B codes

Problems & Construction

Results





#### Countermeasure based on AN+B codes

Redundant table lookups for SubBytes

Provides data and program flow integrity

Assures a constant error detection rate against a strong adversary







Jörn-Marc Schmidt joern-marc.schmidt@iaik.tugraz.at