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Relatore
Note di presentazione
Present yet another AES CM but with some what we consider important differences
Joint work with Jörn-Marc Schmidt
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Relatore
Note di presentazione
50%, 75%

2 Lasers

We were looking for a SW CM for off-the-shelf 8-bit HW which can withstand a strong adversary
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Relatore
Note di presentazione
First fault model, then look at AES and embedding techniques known from PKC, afterwards we deal with the problems which come along with embedding AES
Finally i will talk about the performance and the security of the scheme and conclude.
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Timing

Type of fault

Nature of the fault

Special importance in software

Higher-orders
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Taken from Enrique Zabala’s Flash  Animation
http://www.formaestudio.com/rijndaelinspector/

Relatore
Note di presentazione
Input whitening, 9 rounds consisting of 4 round transformations namely SB, SR, MC, AK, and a final round missing MC
Since we want to protect these operations we are interested in the algebraic description of them
It suffices to look at these four operations since the key scheduling of AES uses essentially the same operations



y3

y2

y1

y0

y3 y2 y1 y0Si

Relatore
Note di presentazione
The AES state consists of a 4x4 matrix with elements in GF(256).
AK works on the state in a bytewise manner, adding the key to the state in GF(256), often a lookup
SB also works on bytes but is more complicated. Invert all elements except zero and do a matrix multiplication over GF(2) plus an addition.
SR just permutes the bytes by rotating the rows. It can be described by a polynomial multiplication mod y^4+1.
MC multiplies the state by a constant matrix and can be described by a polynomial multiplication as well. Multiplication can be realized via log-tables

What can be observed is that all functions except SB are linear operations. That is they are easy to protect.
Furthermore, all operations are closed over GF(256), also subbytes can be expressed as a polynomial over GF(256) via LaPlace interpolation.



Data algebra FD mod n (e.g. RSA ring)
Check algebra FC mod r  (32+ bits)
Operate on (FD x FC)

x CRT(xD, xC) mod n*r
y f(x) mod n*r
y’ f(xC) mod r
Check  y’ = y mod r

Relatore
Note di presentazione
So basically we could say that all operations work on the same algebra which is a finite field.
What is usually done in such a case in PKC is to somehow use ring extension techniques or to embed the algebra in another one.
The idea is that the algorithm is performed on both sub-algebras individually
They they can be easily separated afterards again.
Yet inducing an error in either of them is non-trivial



Pre-computations only needed once

Detect data manipulations

Detect a change of the algorithm

Detect interchange of variables

Relatore
Note di presentazione
So, by embedding GF(256) we get the following benefits
First of all the algorithm is fixed even if the key changes (opposed to common PKC), precalc of f(X_c) can be omitted
Especially the latter two manipulations are not covered by many countermeasures and can be a big threat for software since they do not violate the data integrity.
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Relatore
Note di presentazione
If we think of an 8-bit processor it makes sense to add another 8 bits, however then we have to work on 16 bit operands




Multiplications GF(28) log tables

SubBytes: Both coefficients contain info about xD

xD : GF(28)  GF(28)[y] / y+a1

xC : GF(28)  GF(28)[y] / y+a2

GF(28)[y] / y2+c1 y+c0 : x

x = (xD i11 + xC i21 )*y + (xD i12 + xC i22 )



d = (xC i21 )*y + (xC i22 )+ 
(xin i21 )*y + (xin i22 )

x = (xD i11 + xC i21 )*y + (xD i12 + xC i22 )

Normalize check bytes
Lookup result + correction term
Re-apply check bytes

x = (xD i11 + xin i21 )*y + (xD i12 + xin i22 )

t = (xC i21 )*y + (xC i22 )

d = (xC i21 )*y + (xC i22 )+ 
(xin i21 )*y + (xin i22 )

x = (SB(xD )i11 + xout i21 )*y + (SB(xD )i12 + xout i22 ) + E(xD )

E(xD )

x = (SB(xD )i11 + xout i21 )*y + (SB(xD )i12 + xout i22 )x = (SB(xD )i11 + (xC +xin +xout )i21 )*y + 
(SB(xD )i12 + (xC +xin +xout )i22 )



Fix 32 input check bytes
Perform dummy encryption
Store check bytes of result

Combine every new 
plaintext  with check bytes
Port check bytes if key changes
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Bit fault: Codewords have a DH of 4

Byte fault: 2 bytes must be changed

Program flow: Every operation alters xC

Order 1st 2nd

Bit-fault 100% 100%
Byte-fault 100% 99.6%
Skip instruction 100% 99.6%*

Relatore
Note di presentazione
* attacker has no influence, investigations are needed if this can be prevented



Operation # Cycles
AddRoundKey 305
SubBytes 4 235
ShiftRows+MixColumns 5 717
Encryption 98 322
Plaintext transformation 9 852
Ciphertext inverse transformation 7 933
Redundant key schedule (precomp.) 120 657
Redundant S-box generation (precomp.) 345 648

ATMega128 C implementation
Multiplications in Assembly



Genelle et. al: Usage of digest values
106 cycles with on the fly key schedule, but less 

RAM
1st order: 100%, 2nd order: 28 vs. ~212

No program flow protection
Both schemes are extendable towards higher 

orders
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Countermeasure based on AN+B codes

Redundant table lookups for SubBytes

Provides data and program flow integrity

Assures a constant error detection rate against a 
strong adversary
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