
Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures on
Vigilant’s RSA-CRT Algorithm

J.-S. Coron1, C.Giraud2, N. Morin2, G.Piret2 and
D. Vigilant3

1 Univerisité du Luxembourg
jean-sebastien.coron@uni.lu

2 Oberthur Technologies
[c.giraud, n.morin, g.piret]@oberthur.com

3 Gemalto
david.vigilant@gemalto.com

FDTC - August 21, 2010

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Outline

1 Background and Context
CRT-RSA system
Vigilant’s Secure Ring Exponentiation (CHES ’08)
Application to RSA-CRT

2 Fault Attacks and Countermeasures
Fault Model
Exponent randomization Disturbance
Modulus Computation Disturbance

3 Conclusion

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Outline

1 Background and Context
CRT-RSA system
Vigilant’s Secure Ring Exponentiation (CHES ’08)
Application to RSA-CRT

2 Fault Attacks and Countermeasures
Fault Model
Exponent randomization Disturbance
Modulus Computation Disturbance

3 Conclusion

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

CRT-RSA system

RSA-CRT system

RSA-CRT parameters:
(N, e) Public key
(p, q, dp, dq, iq) Private key

such that

N = p× q, (p, q large primes)
gcd((p− 1), e) = 1
gcd((q− 1), e) = 1
dp = e−1 mod (p− 1)
dq = e−1 mod (q− 1)
iq = q−1 mod p

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

CRT-RSA system

RSA-CRT system

RSA-CRT process

Input: m ∈ ZN , p, q, dp, dq, iq
Output: md ∈ ZN

Sp = mdp mod p
Sq = mdq mod q
S = Sq + q× (iq × (Sp − Sq) mod p)
return S

⇒ RSA-CRT is preferred (4× faster , handles data with size 1
2 |N|)

⇒ Better suited to embedded device constraints
Public exponent e often unavailable

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

CRT-RSA system

Bellcore attack ’97

RSA-CRT process

Input: m ∈ ZN , p, q, dp, dq, iq
Output: md ∈ ZN

Sp = mdp mod p⇐
Sq = mdq mod q
S = Sq + q× (iq × (Sp − Sq) mod p)
return S

⇒ gcd(S− S mod N,N) = q

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

CRT-RSA system

Bellcore attack ’97

RSA-CRT process

Input: m ∈ ZN , p, q, dp, dq, iq
Output: md ∈ ZN

Sp = mdp mod p
Sq = mdq mod q⇐
S = Sq + q× (iq × (Sp − Sq) mod p)
return S

⇒ gcd(S− S mod N,N) = p

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

CRT-RSA system

Bellcore attack ’97

RSA-CRT process

Input: m ∈ ZN , p, q, dp, dq, iq
Output: md ∈ ZN

Sp = mdp mod p
Sq = mdq mod q
S = Sq + q× (iq × (Sp − Sq) mod p)⇐
return S

⇒ gcd(S− S mod N,N) = q

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Context: exponentiation S = md mod N

Variant of Shamir’s countermeasure (’97):

Introduction of a random R

Exponentiation made modulo NR instead of modulo N

Verification of the exponentiation result consistency modulo R

Exponentiation result reduced modulo N

⇒ Allows the fault detection

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Context: exponentiation S = md mod N
Let N an integer and R a random (e.g. 64 bits) s.t. gcd(N,R) = 1

We introduce

α ≡

{
1 mod N
0 mod R

and β ≡

{
0 mod N
1 mod R

β = N × (N−1 mod R) mod N.R
α = 1− β mod N.R

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Considering now R = r2 where r is a random integer (e.g. 32 bits):
β = N × (N−1 mod r2) and α = 1− β mod Nr2

m̂ = αm + β · (1 + r) mod Nr2

m̂ ≡

{
m mod N
1 + r mod r2

Sr = m̂d mod Nr2 = αmd + β · (1 + dr) mod Nr2

Sr ≡

{
md mod N
1 + dr mod r2

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = md mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. ’01)

1 Pick a random r coprime with N and compute α and β
2 Compute m̂ = αm + β · (1 + r) mod Nr2

3 Check that: m = m̂ mod N
4 Compute Sr = m̂d mod Nr2

5 Reduce modulo N: S = Sr mod N
6 Check that: Sr = αS + β · (1 + dr) mod Nr2

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = md mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. ’01)

1 Pick a random r coprime with N and compute α and β
2 Compute m̂ = αm + β · (1 + r) mod Nr2

3 Check that: m = m̂ mod N
4 Compute Sr = m̂d mod Nr2

5 Reduce modulo N: S = Sr mod N
6 Check that: Sr = αS + β · (1 + dr) mod Nr2

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = md mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. ’01)

1 Pick a random r coprime with N and compute α and β
2 Compute m̂ = αm + β · (1 + r) mod Nr2

3 Check that: m = m̂ mod N
4 Compute Sr = m̂d xor 2i

mod Nr2 ⇐ transient fault
5 Reduce modulo N: S = Sr mod N
6 Check that: Sr = αS + β · (1 + dr) mod Nr2

detected : Sr = αS + β · (1 + ((d xor 2i) · r)) mod Nr2

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = md mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. ’01)

1 Pick a random r coprime with N and compute α and β
2 Compute m̂ = αm + β · (1 + r) mod Nr2

3 Check that: m = m̂ mod N
4 Compute Sr = m̂d xor 2i

mod Nr2 ⇐ transient fault
5 Reduce modulo N: S = Sr mod N
6 Check that: Sr = αS + β · (1 + dr) mod Nr2

detected : Sr = αS + β · (1 + ((d xor 2i) · r)) mod Nr2

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Application to RSA-CRT

Application to RSA-CRT (’08): Half exponentiation

r is a 32-bit random integer and R1 is a 64-bit random integer
(Critical verifications in red)

1. mp = m mod pr2 m m

mod p mod r2 mod p−1

2. βp = p · (p−1 mod r2) 0 1

3. αp = 1− βp mod pr2 1 0

4. m̂p = αpmp + βp · (1 + r) m 1 + r

5. d′p = dp + R1 · (p− 1) dp

6. Spr = m̂
d′

p
p mod pr2 mdp 1 + d′pr

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Application to RSA-CRT

Application to RSA-CRT: Half exponentiation

r is a 32-bit random integer and R2 is a 64-bit random integer
(Critical verifications in red)

1. mq = m mod qr2 m m

mod q mod r2 mod q−1

2. βq = q · (q−1 mod r2) 0 1

3. αq = 1− βq mod qr2 1 0

4. m̂q = αqmq + βq · (1 + r) m 1 + r

5. d′q = dq + R2 · (q− 1) dq

6. Sqr = m̂
d′

q
q mod qr2 mdq 1 + d′qr

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Application to RSA-CRT

Application to RSA-CRT: Recombination

R3 and R4 are 64-bit random integers
Recombination:

1 Transform

Spr into S′p s.t.

{
S′p ≡ mdp mod p
S′p ≡ R3 mod r2

and Sqr into S′q s.t.

{
S′q ≡ mdq mod q
S′q ≡ R4 mod r2

2 S = S′q + q · (iq · (S′p − S′q) mod pr2)

3 Check S mod r2 ? = R4 + qiq · (R3 − R4) mod r2

4 Return S mod N if all checks positive

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Outline

1 Background and Context
CRT-RSA system
Vigilant’s Secure Ring Exponentiation (CHES ’08)
Application to RSA-CRT

2 Fault Attacks and Countermeasures
Fault Model
Exponent randomization Disturbance
Modulus Computation Disturbance

3 Conclusion

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Fault Model

Random Fault Model

As in the original paper, it is considered that an attacker can:

modify a value in memory with a random value (permanent fault)

modify a value during the computation with a random value
(transient fault)

not modify the code execution or Boolean results of comparisons

not inject permanent faults in p, q, dp, dq, iq.
(associated to an integrity value)

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
d′p = dp + R1 · (p− 1)
Check that d′p ? = dp mod (p− 1)

A natural way of implementing these steps is to perform the following:
pminusone = p− 1
d′p = dp + R1 · pminusone

Check that d′p ? = dp mod pminusone

The value of pminusone is not used anymore

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
d′p = dp + R1 · (p− 1)
Check that d′p ? = dp mod (p− 1)

A natural way of implementing these steps is to perform the following:
pminusone = p− 1
d′p = dp + R1 · pminusone

Check that d′p ? = dp mod pminusone

The value of pminusone is not used anymore

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
d′p = dp + R1 · (p− 1)
Check that d′p ? = dp mod (p− 1)

A natural way of implementing these steps is to perform the following:
pminusone = p− 1⇐ sensitive to transient or permanent fault
d′p = dp + R1 · pminusone

Check that d′p ? = dp mod pminusone

The value of pminusone is not used anymore

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
d′p = dp + R1 · (p− 1)
Check that d′p ? = dp mod (p− 1)

A natural way of implementing these steps is to perform the following:
pminusone = p− 1⇐ sensitive to transient or permanent fault
d′p = dp + R1 · pminusone

Check that d′p ? = dp mod pminusone
Test true even if pminusone faulty
The value of pminusone is not used anymore

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

The attacker injects a transient fault in pminusone computation,
or a permanent fault in pminusone juste before d′p computation

Thus the attacker obtains a faulty S which is faulty only modulo p

The attacker can perform a gcd attack to recover
p = gcd(Se − m mod N,N)

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Countermeasures

A secure implementation must:

Either use pminusone in the sequel of the signature calculation:
Indeed, recompute p from pminusone: Add a step p = pminusone+1

Or compute pminusone twice and verify that both results are equal

The same holds for qminusone

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:

N = pq

Check N.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0

and q.iq mod p ? = 1

Return S mod N if all checks positive

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:

N = pq⇐sensitive to transient fault

Check N.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0

and q.iq mod p ? = 1

Return S mod N if all checks positive

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:

N = pq⇐sensitive to transient fault

Check N.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0
Test true whatever is N
and q.iq mod p ? = 1

Return S mod N if all checks positive

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

The attacker injects a transient fault in p during the computation of N,
N = p× q

S mod N is returned

The attacker has a signature faulty modulo p, and correct modulo q

Again, he can compute p = gcd(Se − m mod N,N)

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Countermeasure

Clear need to verify the integrity of the modulus.
It can be done through different simple ways, for instance:

Replace "Check N.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0 "
by "Check p.q.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0 " before
returning S mod N

Add a final step "Check N.iqr mod r2 ? = p mod r2 " before
returning S mod N

Select a random T, compute Tp = p mod T, Tq = q mod T and add
a final step "Check that N mod T ? = Tp.Tq mod T" before
returning S mod N

. . .

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Conclusion

Outline

1 Background and Context
CRT-RSA system
Vigilant’s Secure Ring Exponentiation (CHES ’08)
Application to RSA-CRT

2 Fault Attacks and Countermeasures
Fault Model
Exponent randomization Disturbance
Modulus Computation Disturbance

3 Conclusion

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Conclusion

Conclusion

We have shown 2 attacks:

Modulus computation disturbance: A transient fault in p or q
during the modulus computation before final reduction . . .

Exponent randomization disturbance: A transient fault during
p− 1 or q− 1 computation, or a permanent fault in p− 1 and q− 1
values before the computation of d′p or d′q . . .

They allow performing gcd attacks and recovering the secret key on
Vigilant’s RSA-CRT algorithm

We have given simple countermeasures thwarting both attacks

Verification of modulus integrity, before returning the result

Verification or reusing of p− 1 and q− 1 values

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Conclusion

Conclusion

Since countermeasures have a negligible cost,

The combination of the original scheme with presented
countermeasures

Remains well-suited to constraints of embedded device

Gives very high level of fault detection capability when public
exponent is unknown

These attacks may impact most of others RSA-CRT schemes
(e.g.) Exponent randomization disturbance feasible on Aumüller et
al.’s scheme (CHES’02)
⇒ Impact of attacks on all other schemes to be evaluated

Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Conclusion

Thanks for your attention

Any Questions?

	Background and Context
	CRT-RSA system
	Vigilant's Secure Ring Exponentiation (CHES '08)
	Application to RSA-CRT

	Fault Attacks and Countermeasures
	Fault Model
	Exponent randomization Disturbance
	Modulus Computation Disturbance

	Conclusion

