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Background and Context

CRT-RSA system

RSA-CRT system

RSA-CRT parameters:
(N, e) Public key
(p, q, dp, dq, iq) Private key

such that



N = p× q, (p, q large primes)
gcd((p− 1), e) = 1
gcd((q− 1), e) = 1
dp = e−1 mod (p− 1)
dq = e−1 mod (q− 1)
iq = q−1 mod p
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RSA-CRT system

RSA-CRT process

Input: m ∈ ZN , p, q, dp, dq, iq
Output: md ∈ ZN

Sp = mdp mod p
Sq = mdq mod q
S = Sq + q× (iq × (Sp − Sq) mod p)
return S

⇒ RSA-CRT is preferred (4× faster , handles data with size 1
2 |N|)

⇒ Better suited to embedded device constraints
Public exponent e often unavailable
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RSA-CRT process

Input: m ∈ ZN , p, q, dp, dq, iq
Output: md ∈ ZN

Sp = mdp mod p⇐
Sq = mdq mod q
S = Sq + q× (iq × (Sp − Sq) mod p)
return S

⇒ gcd(S− S mod N,N) = q
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Vigilant’s Secure Ring Exponentiation (CHES ’08)

Context: exponentiation S = md mod N

Variant of Shamir’s countermeasure (’97):

Introduction of a random R

Exponentiation made modulo NR instead of modulo N

Verification of the exponentiation result consistency modulo R

Exponentiation result reduced modulo N

⇒ Allows the fault detection
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Vigilant’s Secure Ring Exponentiation (CHES ’08)

Context: exponentiation S = md mod N
Let N an integer and R a random (e.g. 64 bits) s.t. gcd(N,R) = 1

We introduce

α ≡

{
1 mod N
0 mod R

and β ≡

{
0 mod N
1 mod R

β = N × (N−1 mod R) mod N.R
α = 1− β mod N.R
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Vigilant’s Secure Ring Exponentiation (CHES ’08)

Considering now R = r2 where r is a random integer (e.g. 32 bits):
β = N × (N−1 mod r2) and α = 1− β mod Nr2

m̂ = αm + β · (1 + r) mod Nr2

m̂ ≡

{
m mod N
1 + r mod r2

Sr = m̂d mod Nr2 = αmd + β · (1 + dr) mod Nr2

Sr ≡

{
md mod N
1 + dr mod r2
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Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = md mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. ’01)

1 Pick a random r coprime with N and compute α and β
2 Compute m̂ = αm + β · (1 + r) mod Nr2

3 Check that: m = m̂ mod N
4 Compute Sr = m̂d mod Nr2

5 Reduce modulo N: S = Sr mod N
6 Check that: Sr = αS + β · (1 + dr) mod Nr2



Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = md mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. ’01)

1 Pick a random r coprime with N and compute α and β
2 Compute m̂ = αm + β · (1 + r) mod Nr2

3 Check that: m = m̂ mod N
4 Compute Sr = m̂d mod Nr2

5 Reduce modulo N: S = Sr mod N
6 Check that: Sr = αS + β · (1 + dr) mod Nr2



Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Background and Context

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = md mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. ’01)

1 Pick a random r coprime with N and compute α and β
2 Compute m̂ = αm + β · (1 + r) mod Nr2

3 Check that: m = m̂ mod N
4 Compute Sr = m̂d xor 2i

mod Nr2 ⇐ transient fault
5 Reduce modulo N: S = Sr mod N
6 Check that: Sr = αS + β · (1 + dr) mod Nr2

detected : Sr = αS + β · (1 + ((d xor 2i) · r)) mod Nr2
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Application to RSA-CRT (’08): Half exponentiation

r is a 32-bit random integer and R1 is a 64-bit random integer
(Critical verifications in red)

1. mp = m mod pr2 m m

mod p mod r2 mod p−1

2. βp = p · (p−1 mod r2) 0 1

3. αp = 1− βp mod pr2 1 0

4. m̂p = αpmp + βp · (1 + r) m 1 + r

5. d′p = dp + R1 · (p− 1) dp

6. Spr = m̂
d′

p
p mod pr2 mdp 1 + d′pr
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Application to RSA-CRT: Half exponentiation

r is a 32-bit random integer and R2 is a 64-bit random integer
(Critical verifications in red)

1. mq = m mod qr2 m m

mod q mod r2 mod q−1

2. βq = q · (q−1 mod r2) 0 1

3. αq = 1− βq mod qr2 1 0

4. m̂q = αqmq + βq · (1 + r) m 1 + r

5. d′q = dq + R2 · (q− 1) dq

6. Sqr = m̂
d′

q
q mod qr2 mdq 1 + d′qr
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Application to RSA-CRT: Recombination

R3 and R4 are 64-bit random integers
Recombination:

1 Transform

Spr into S′p s.t.

{
S′p ≡ mdp mod p
S′p ≡ R3 mod r2

and Sqr into S′q s.t.

{
S′q ≡ mdq mod q
S′q ≡ R4 mod r2

2 S = S′q + q · (iq · (S′p − S′q) mod pr2)

3 Check S mod r2 ? = R4 + qiq · (R3 − R4) mod r2

4 Return S mod N if all checks positive
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Fault Attacks and Countermeasures

Fault Model

Random Fault Model

As in the original paper, it is considered that an attacker can:

modify a value in memory with a random value (permanent fault)

modify a value during the computation with a random value
(transient fault)

not modify the code execution or Boolean results of comparisons

not inject permanent faults in p, q, dp, dq, iq.
(associated to an integrity value)
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Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
d′p = dp + R1 · (p− 1)
Check that d′p ? = dp mod (p− 1)

A natural way of implementing these steps is to perform the following:
pminusone = p− 1
d′p = dp + R1 · pminusone

Check that d′p ? = dp mod pminusone

The value of pminusone is not used anymore
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Reading RSA-CRT pseudo-code in the original paper:
d′p = dp + R1 · (p− 1)
Check that d′p ? = dp mod (p− 1)

A natural way of implementing these steps is to perform the following:
pminusone = p− 1⇐ sensitive to transient or permanent fault
d′p = dp + R1 · pminusone

Check that d′p ? = dp mod pminusone
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Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
d′p = dp + R1 · (p− 1)
Check that d′p ? = dp mod (p− 1)

A natural way of implementing these steps is to perform the following:
pminusone = p− 1⇐ sensitive to transient or permanent fault
d′p = dp + R1 · pminusone

Check that d′p ? = dp mod pminusone
Test true even if pminusone faulty
The value of pminusone is not used anymore
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Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

The attacker injects a transient fault in pminusone computation,
or a permanent fault in pminusone juste before d′p computation

Thus the attacker obtains a faulty S which is faulty only modulo p

The attacker can perform a gcd attack to recover
p = gcd(Se − m mod N,N)
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Exponent randomization Disturbance

Exponent randomization Disturbance:
Countermeasures

A secure implementation must:

Either use pminusone in the sequel of the signature calculation:
Indeed, recompute p from pminusone: Add a step p = pminusone+1

Or compute pminusone twice and verify that both results are equal

The same holds for qminusone
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Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:

N = pq

Check N.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0

and q.iq mod p ? = 1

Return S mod N if all checks positive
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Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:

N = pq⇐sensitive to transient fault

Check N.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0
Test true whatever is N
and q.iq mod p ? = 1

Return S mod N if all checks positive
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Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

The attacker injects a transient fault in p during the computation of N,
N = p× q

S mod N is returned

The attacker has a signature faulty modulo p, and correct modulo q

Again, he can compute p = gcd(Se − m mod N,N)
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Modulus Computation Disturbance

Modulus Computation Disturbance:
Countermeasure

Clear need to verify the integrity of the modulus.
It can be done through different simple ways, for instance:

Replace "Check N.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0 "
by "Check p.q.[S− R4 − qiq.(R3 − R4)] mod Nr2 ? = 0 " before
returning S mod N

Add a final step "Check N.iqr mod r2 ? = p mod r2 " before
returning S mod N

Select a random T, compute Tp = p mod T, Tq = q mod T and add
a final step "Check that N mod T ? = Tp.Tq mod T" before
returning S mod N

. . .



Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Conclusion

Outline

1 Background and Context
CRT-RSA system
Vigilant’s Secure Ring Exponentiation (CHES ’08)
Application to RSA-CRT

2 Fault Attacks and Countermeasures
Fault Model
Exponent randomization Disturbance
Modulus Computation Disturbance

3 Conclusion



Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm

Conclusion

Conclusion

We have shown 2 attacks:

Modulus computation disturbance: A transient fault in p or q
during the modulus computation before final reduction . . .

Exponent randomization disturbance: A transient fault during
p− 1 or q− 1 computation, or a permanent fault in p− 1 and q− 1
values before the computation of d′p or d′q . . .

They allow performing gcd attacks and recovering the secret key on
Vigilant’s RSA-CRT algorithm

We have given simple countermeasures thwarting both attacks

Verification of modulus integrity, before returning the result

Verification or reusing of p− 1 and q− 1 values
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Conclusion

Since countermeasures have a negligible cost,

The combination of the original scheme with presented
countermeasures

Remains well-suited to constraints of embedded device

Gives very high level of fault detection capability when public
exponent is unknown

These attacks may impact most of others RSA-CRT schemes
(e.g.) Exponent randomization disturbance feasible on Aumüller et
al.’s scheme (CHES’02)
⇒ Impact of attacks on all other schemes to be evaluated
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Thanks for your attention

Any Questions?
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