Fault Attacks and Countert ures on Vigilant's RSA-CRT Algorithm

Fault Attacks and Countermeasures on
Vigilant’'s RSA-CRT Algorithm

J.-S. Coron!, C.Giraud?, N. Morin?, G.Piret? and
D. Vigilant®

! Univerisité du Luxembourg

jean-sebastien.coron@uni.lu

2 Oberthur Technologies

[c.giraud, n.morin, g.piret{@oberthur.com

3 Gemalto

david.vigilant@gemalto.com

FDTC - August 21, 2010



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm

Outline

0 Background and Context
@ CRT-RSA system
@ Vigilant’s Secure Ring Exponentiation (CHES ’08)
@ Application to RSA-CRT

e Fault Attacks and Countermeasures
@ Fault Model
@ Exponent randomization Disturbance
@ Modulus Computation Disturbance

e Conclusion



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context

Outline

e Background and Context
@ CRT-RSA system
@ Vigilant’s Secure Ring Exponentiation (CHES ’08)
@ Application to RSA-CRT



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
CRT-RSA system

RSA-CRT system

RSA-CRT parameters:
(N, e) Public key
(p,q,d,,d,,i,) Private key

N =p % g, (p, q large primes)
ged((p—1),e) =1
ged((g—1),e) =1
dy=e¢'mod (p—1)

dg =e"" mod (g — 1)

|
g =4

such that

mod p



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
CRT-RSA system

RSA-CRT system

RSA-CRT process

Input: m € Zy,p,q,dy,dy, iy
Output: m? € Zy

S, = m% mod p

S, = m% mod ¢

§=2S4+q x (ig X (S, — S4) mod p)
return s

= RSA-CRT is preferred (4x faster , handles data with size 1 [N])
= Better suited to embedded device constraints
Public exponent e often unavailable



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
CRT-RSA system

Bellcore attack '97

RSA-CRT process

Input: m € Zy,p,q,d,,d,, i,
Output: m? € Zy

Sp = mb modp <~

S? = m% mod ¢

§= S84+ g x (ig x (S, — S4) mod p)
return S

= ged(S — Smod N,N) =g




Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
CRT-RSA system

Bellcore attack '97

RSA-CRT process

Input: m € Zy,p,q,d,, dy, i
Output: m? ¢ Zy

% mod p

S, =m
Sy = m mod g <«
S=258,4q x (ig x (S, — S,;) mod p)
return S *

= gcd(S— Smod N,N) =p




Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
CRT-RSA system

Bellcore attack '97

RSA-CRT process

Input: m € Zy,p,q,d,,d,, i,
Output: m? ¢ Zy

S, = m% mod p

S, = m% mod g

S=8,+4gx (ig x (S, — ;) mod p) <
return §

= gcd(S— Smod N,N) =g



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Context: exponentiation S = m¢ mod N

Variant of Shamir’s countermeasure ('97):

@ Introduction of a random R

@ Exponentiation made modulo NR instead of modulo N

@ Verification of the exponentiation result consistency modulo R
@ Exponentiation result reduced modulo N

= Allows the fault detection



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Context: exponentiation S = m¢ mod N
Let N an integer and R a random (e.g. 64 bits) s.t. gcd(N,R) =1

We introduce

1
N { mod N andﬁz{omOdN

0 mod R 1 mod R

B =N x (N~! mod R) mod N.R
a=1— L modN.R



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

Considering now R = r* where r is a random integer (e.g. 32 bits):
B=Nx(N"'modr*) and a=1-pmodNr

m=am+ (- (1+r) mod Nr?

m

m mod N
1 + r mod 2

S, = m mod Nr* = am® + 3 - (1 + dr) mod Nr*

g — m¢ mod N
"7 11+ drmod 2



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = m? mod N
How to check if no disturbance?

@ Pick a random r coprime with N and compute « and 3
@ Compute /it = am + - (1 + r) mod Nr?

© Check that: m = /i mod N

©Q Compute S, = m¢ mod Nr?

@ Reduce modulo N: § = S, mod N

@ Check that: S, = aS+ 3 - (1 + dr) mod Nr?



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = m? mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. '01)

@ Pick a random r coprime with N and compute o and 3
@ Compute /it = am + - (1 + r) mod Nr?

© Check that: m = /i mod N

Q@ Compute S, = m¢ mod Nr?

@ Reduce modulo N: § = S, mod N

@ Check that: S, = aS+ 3 - (1 + dr) mod Nr?



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = m? mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. '01)

@ Pick a random r coprime with N and compute « and 3
@ Compute i = am + 3 - (1 + r) mod Nr?

@ Check that: m = /n mod N

@ Compute S, = m?*" 2 mod Nr* < transient fault

@ Reduce modulo N: § = S, mod N

@ Checkthat: S, = aS+ 3 - (1 + dr) mod Nr?



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant’s Secure Ring Exponentiation (CHES ’08)

We want to compute S = m? mod N
How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. '01)

@ Pick a random r coprime with N and compute « and 3
@ Compute i = am + 3 - (1 + r) mod Nr?

© Check that: m = /i mod N

@ Compute S, = m?*" 2 mod Nr* < transient fault

@ Reduce modulo N: § = S, mod N

@ Checkthat: S, = aS+ 3 - (1 + dr) mod Nr?
detected : S, = aS + B - (1 + ((d xor 2') - r)) mod Nr?



Application to RSA-CRT ('08): Half exponentiation

r is a 32-bit random integer and R; is a 64-bit random integer

(Critical verifications in red)

1. m, = m mod pr’

2. 8,=p-(p~! mod r?)

3. &, =1— 3, mod pr?

[
[
i
!
[

5. d,=d,+Ri-(p—1)

[
[
[
[4. ity = apmy + By - (1 47)
[
[

. d,
6. S, = iy, mod pr’

)
]
)
]
1
] (e ) [(4d)




Application to RSA-CRT: Half exponentiation

r is a 32-bit random integer and R; is a 64-bit random integer

(Critical verifications in red)

1. m; = m mod gr’

2. B, =q-(¢"" mod r?)

3. oy =1- 3, mod gr?

[
[
i
!
[

5. d;qu+R2‘(q—l)

[
[
[
(4. 1, = agm,+ 8, (1+7)
[
[

. d
6. S, = iy’ mod gr’

)
)
)
)
)
) )




Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Background and Context
Application to RSA-CRT

Application to RSA-CRT: Recombination

R; and R, are 64-bit random integers
Recombination:

@ Transform

S, = m% mod p

S, into S/ s.t.
v P {S; = R; mod r?

S, = m% mod ¢

and S, into S s.t.
qr 4 {S; = R, mod r?

Q S=5,+q-(iy- (S,—S;) mod pr*)
@ Check S mod r* ? = Ry + qi, - (R3 — Ry) mod r?
© Return S mod N if all checks positive



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Outline

e Fault Attacks and Countermeasures
@ Fault Model
@ Exponent randomization Disturbance
@ Modulus Computation Disturbance



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures
Fault Model

Random Fault Model

As in the original paper, it is considered that an attacker can:
@ modify a value in memory with a random value (permanent fault)

@ modify a value during the computation with a random value
(transient fault)

@ not modify the code execution or Boolean results of comparisons

@ not inject permanent faults in p, ¢, d,, dg, i,.
(associated to an integrity value)



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance




Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
] dII,de-‘rRl-(p—l)
@ Check thatd, ? = d, mod (p — 1)



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures
Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
] dII,de-‘rRl-(p—l)
@ Check thatd, ? = d, mod (p — 1)

A natural way of implementing these steps is to perform the following:
@ pminusone =p — 1
® d, = d, + R, - pminusone
@ Check that d, ? = d, mod pminusone

@ The value of pminusone is not used anymore



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
] dII,de-‘rRl-(p—l)
@ Check thatd, ? = d, mod (p — 1)

A natural way of implementing these steps is to perform the following:
@ pminusone = p — 1 < sensitive to transient or permanent fault

® d, = d, + R, - pminusone
@ Check that d, ? = d, mod pminusone

@ The value of pminusone is not used anymore



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

Reading RSA-CRT pseudo-code in the original paper:
o d;:dp—FRl (p—l)
@ Check thatd, ? = d, mod (p — 1)

A natural way of implementing these steps is to perform the following:
@ pminusone = p — 1 < sensitive to transient or permanent fault

® d, = d, + R, - pminusone
@ Check that d, ? = d, mod pminusone
Test true even if pminusone faulty
@ The value of pminusone is not used anymore




Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures
Exponent randomization Disturbance

Exponent randomization Disturbance:
Attack

The attacker injects a transient fault in pminusone computation,
or a permanent fault in pminusone juste before d, computation

Thus the attacker obtains a faulty S which is faulty only modulo p

The attacker can perform a gcd attack to recover
p = ged(S¢ — m mod N, N)



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures
Exponent randomization Disturbance

Exponent randomization Disturbance:
Countermeasures

A secure implementation must:

@ Either use pminusone in the sequel of the signature calculation:
Indeed, recompute p from pminusone: Add a step p = pminusone+1

@ Or compute pminusone twice and verify that both results are equal

The same holds for gminusone



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance




Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:
@ N=pq
@ Check N.[S — Ry — gi,.(R3 — R4)] mod Nr* 7 =0

and g.i,modp? =1

@ Return S mod N if all checks positive



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:

@ N = pg <sensitive to transient fault

@ Check N.[S — Ry — giy.(R3 — R4)] mod Nr* 7 =0

and g.i;modp ? =1

@ Return S mod N if all checks positive



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

In the original paper, final steps are exactly written as follows:

@ N = pg <sensitive to transient fault

@ Check N.[S — Ry — gi,.(R3 — R4)] mod Nr* 7 =0
Test true whatever is N
and g.i;modp?=1

@ Return S mod N if all checks positive



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures
Modulus Computation Disturbance

Modulus Computation Disturbance:
Attack

The attacker injects a transient fault in p during the computation of N,
N=pxq

S mod N is returned

The attacker has a signature faulty modulo p, and correct modulo ¢

Again, he can compute p = ged(S° — m mod N, N)



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Fault Attacks and Countermeasures
Modulus Computation Disturbance

Modulus Computation Disturbance:
Countermeasure

Clear need to verify the integrity of the modulus.
It can be done through different simple ways, for instance:

@ Replace "Check N.[S — Ry — qiy.(R3 — R4)] mod Nr* 2 =0"
by "Check p.q.[S — R4 — qiy.(R3 — R4)] mod Nr? ? = 0 " before
returning S mod N

@ Add a final step "Check N.i,, mod * ? = p mod r? " before
returning S mod N

@ Select arandom T', compute T, = p mod T, T, = ¢ mod T and add
a final step "Check that N mod T ? = 7,,.T, mod T" before
returning S mod N



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Conclusion

Outline

e Conclusion



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Conclusion

Conclusion

We have shown 2 attacks:

@ Modulus computation disturbance: A transient fault in p or ¢
during the modulus computation before final reduction . ..

@ Exponent randomization disturbance: A transient fault during
p — 1 or g— 1 computation, or a permanent faultinp — 1 and g — 1
values before the computation of @, or d; ...

They allow performing ged attacks and recovering the secret key on
Vigilant’s RSA-CRT algorithm

We have given simple countermeasures thwarting both attacks

@ Verification of modulus integrity, before returning the result

@ Verification or reusing of p — 1 and ¢ — 1 values



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Conclusion

Conclusion

Since countermeasures have a negligible cost,

The combination of the original scheme with presented
countermeasures

@ Remains well-suited to constraints of embedded device

@ Gives very high level of fault detection capability when public
exponent is unknown

These attacks may impact most of others RSA-CRT schemes
(e.g.) Exponent randomization disturbance feasible on Aumdiller et
al’s scheme (CHES’02)

= Impact of attacks on all other schemes to be evaluated



Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm
Conclusion

Thanks for your attention

Any Questions?



	Background and Context
	CRT-RSA system
	Vigilant's Secure Ring Exponentiation (CHES '08)
	Application to RSA-CRT

	Fault Attacks and Countermeasures
	Fault Model
	Exponent randomization Disturbance
	Modulus Computation Disturbance

	Conclusion

