J.-S. Coron¹, C.Giraud², N. Morin², G.Piret² and **D.** Vigilant³

¹ Univerisité du Luxembourg jean-sebastien.coron@uni.lu

² Oberthur Technologies [c.giraud, n.morin, g.piret]@oberthur.com

Gemalto david.vigilant@gemalto.com

FDTC - August 21, 2010

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Background and Context

- CRT-RSA system
- Vigilant's Secure Ring Exponentiation (CHES '08)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Application to RSA-CRT

Pault Attacks and Countermeasures

- Fault Model
- Exponent randomization Disturbance
- Modulus Computation Disturbance

3 Conclusion

Background and Context

Outline

- CRT-RSA system
- Vigilant's Secure Ring Exponentiation (CHES '08)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Application to RSA-CRT

2 Fault Attacks and Countermeasures

- Fault Model
- Exponent randomization Disturbance
- Modulus Computation Disturbance

3 Conclusion

Background and Context

CRT-RSA system

RSA-CRT system

RSA-CRT parameters: (N, e) Public key (p, q, d_p, d_q, i_q) Private key

such th

1 ...

hat
$$\begin{cases} N = p \times q, (p, q \text{ large primes}) \\ \gcd((p-1), e) = 1 \\ \gcd((q-1), e) = 1 \\ d_p = e^{-1} \mod (p-1) \\ d_q = e^{-1} \mod (q-1) \\ i_q = q^{-1} \mod p \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Background and Context

CRT-RSA system

RSA-CRT system

RSA-CRT process

Input: $m \in \mathbb{Z}_N, p, q, d_p, d_q, i_q$ Output: $m^d \in \mathbb{Z}_N$

$$egin{aligned} S_p &= m^{d_p} \mod p \ S_q &= m^{d_q} \mod q \ S &= S_q + q imes (i_q imes (S_p - S_q) \mod p) \end{aligned}$$
return S

⇒ RSA-CRT is preferred (4× faster , handles data with size $\frac{1}{2} |N|$) ⇒ Better suited to embedded device constraints Public exponent *e* often unavailable

Background and Context

CRT-RSA system

Bellcore attack '97

RSA-CRT process

Input: $m \in \mathbb{Z}_N, p, q, d_p, d_q, i_q$ Output: $m^d \in \mathbb{Z}_N$ $S_p = m^{d_p} \mod p \Leftarrow$ $S_q = m^{d_q} \mod q$ $\underline{S} = S_q + q \times (i_q \times (\underline{S_p} - S_q) \mod p)$ return S

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\Rightarrow \gcd(\underline{S} - S \mod N, N) = q$

Background and Context

CRT-RSA system

Bellcore attack '97

RSA-CRT process

Input: $m \in \mathbb{Z}_N, p, q, d_p, d_q, i_q$ Output: $m^d \in \mathbb{Z}_N$ $S_p = m^{d_p} \mod p$ $\underline{S}_q = m^{d_q} \mod q \Leftarrow$ $\underline{S} = \underline{S}_q + q \times (i_q \times (S_p - \underline{S}_q) \mod p)$ return S

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\Rightarrow \gcd(\underline{S} - S \mod N, N) = p$

Background and Context

CRT-RSA system

Bellcore attack '97

RSA-CRT process

 $\begin{array}{ll} \textbf{Input:} \ m \in \mathbb{Z}_N, p, q, d_p, d_q, i_q \\ \textbf{Output:} \ m^d \in \mathbb{Z}_N \\ S_p = m^{d_p} \ \text{mod} \ p \\ S_q = m^{d_q} \ \text{mod} \ q \\ \underline{S} = S_q + q \times (\underline{i_q} \times (S_p - S_q) \ \text{mod} \ p) \\ \textbf{return} \ S \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\Rightarrow \gcd(\underline{S} - S \mod N, N) = q$

Background and Context

Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant's Secure Ring Exponentiation (CHES '08)

Context: exponentiation $S = m^d \mod N$

Variant of Shamir's countermeasure ('97):

- Introduction of a random R
- Exponentiation made modulo NR instead of modulo N
- Verification of the exponentiation result consistency modulo R
- Exponentiation result reduced modulo N
- \Rightarrow Allows the fault detection

Background and Context

Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant's Secure Ring Exponentiation (CHES '08)

Context: exponentiation $S = m^d \mod N$ Let *N* an integer and *R* a random (e.g. 64 bits) s.t. gcd(N, R) = 1

We introduce

$$\alpha \equiv \begin{cases} 1 \mod N \\ 0 \mod R \end{cases} \quad \text{and} \quad \beta \equiv \begin{cases} 0 \mod N \\ 1 \mod R \end{cases}$$

$$\begin{split} \beta &= N \times (N^{-1} \bmod R) \bmod N.R \\ \alpha &= 1 - \beta \bmod N.R \end{split}$$

Background and Context

Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant's Secure Ring Exponentiation (CHES '08)

Considering now $R = r^2$ where *r* is a random integer (e.g. 32 bits): $\beta = N \times (N^{-1} \mod r^2)$ and $\alpha = 1 - \beta \mod Nr^2$

$$\hat{m} = \alpha m + \beta \cdot (1+r) \mod Nr^2$$

$$\hat{m} \equiv \begin{cases} m \mod N \\ 1 + r \mod r^2 \end{cases}$$

 $S_r = \hat{m}^d \mod Nr^2 = \alpha m^d + \beta \cdot (1 + dr) \mod Nr^2$

$$S_r \equiv \begin{cases} m^d \mod N\\ 1 + dr \mod r^2 \end{cases}$$

Background and Context

Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant's Secure Ring Exponentiation (CHES '08)

We want to compute $S = m^d \mod N$ How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. '01)

- **(**) Pick a random *r* coprime with *N* and compute α and β
- **2** Compute $\hat{m} = \alpha m + \beta \cdot (1 + r) \mod Nr^2$
- 3 Check that: $m = \hat{m} \mod N$
- Occupate $S_r = \hat{m}^d \mod Nr^2$
- Seduce modulo N: $S = S_r \mod N$
- Check that: $S_r = \alpha S + \beta \cdot (1 + dr) \mod Nr^2$

Background and Context

Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant's Secure Ring Exponentiation (CHES '08)

We want to compute $S = m^d \mod N$ How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. '01)

- **(**) Pick a random *r* coprime with *N* and compute α and β
- **2** Compute $\hat{m} = \alpha m + \beta \cdot (1 + r) \mod Nr^2$
- 3 Check that: $m = \hat{m} \mod N$
- Occupate $S_r = \hat{m}^d \mod Nr^2$
- Seduce modulo N: $S = S_r \mod N$
- Check that: $S_r = \alpha S + \beta \cdot (1 + dr) \mod Nr^2$

Background and Context

Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant's Secure Ring Exponentiation (CHES '08)

We want to compute $S = m^d \mod N$ How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. '01)

- **(**) Pick a random *r* coprime with *N* and compute α and β
- 2 Compute $\hat{m} = \alpha m + \beta \cdot (1 + r) \mod Nr^2$
- 3 Check that: $m = \hat{m} \mod N$
- Occupate $S_r = \hat{m}^{d \text{ xor } 2^i} \mod Nr^2 \leftarrow \text{transient fault}$
- Seduce modulo N: $S = S_r \mod N$
- Check that: $S_r = \alpha S + \beta \cdot (1 + dr) \mod Nr^2$ detected : $S_r = \alpha S + \beta \cdot (1 + ((d \ xor \ 2^i) \cdot r)) \mod Nr^2$

Background and Context

Vigilant's Secure Ring Exponentiation (CHES '08)

Vigilant's Secure Ring Exponentiation (CHES '08)

We want to compute $S = m^d \mod N$ How to check if no disturbance?

example: flipping exponent bit attack (Boneh et al. '01)

- **(**) Pick a random *r* coprime with *N* and compute α and β
- 2 Compute $\hat{m} = \alpha m + \beta \cdot (1 + r) \mod Nr^2$
- 3 Check that: $m = \hat{m} \mod N$
- Compute $S_r = \hat{m}^{d \ xor \ 2^i} \mod Nr^2 \Leftarrow \text{transient fault}$
- Seduce modulo N: $S = S_r \mod N$
- Check that: $S_r = \alpha S + \beta \cdot (1 + dr) \mod Nr^2$ detected : $S_r = \alpha S + \beta \cdot (1 + ((d \text{ xor } 2^i) \cdot r)) \mod Nr^2$

Background and Context

Application to RSA-CRT

Application to RSA-CRT ('08): Half exponentiation

r is a 32-bit random integer and R_1 is a 64-bit random integer (Critical verifications in red)

Background and Context

Application to RSA-CRT

Application to RSA-CRT: Half exponentiation

r is a 32-bit random integer and R_2 is a 64-bit random integer (Critical verifications in red)

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Background and Context

Application to RSA-CRT

Application to RSA-CRT: Recombination

 R_3 and R_4 are 64-bit random integers Recombination:

Transform

$$S_{pr} \text{ into } S'_{p} \text{ s.t.} \begin{cases} S'_{p} \equiv m^{d_{p}} \mod p \\ S'_{p} \equiv R_{3} \mod r^{2} \end{cases}$$

and $S_{qr} \text{ into } S'_{q} \text{ s.t.} \begin{cases} S'_{q} \equiv m^{d_{q}} \mod q \\ S'_{q} \equiv R_{4} \mod r^{2} \end{cases}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fault Attacks and Countermeasures

Outline

- CRT-RSA system
- Vigilant's Secure Ring Exponentiation (CHES '08)

・ロト・日本・日本・日本・日本

Application to RSA-CRT

Pault Attacks and Countermeasures

- Fault Model
- Exponent randomization Disturbance
- Modulus Computation Disturbance

3 Conclusion

Fault Attacks and Countermeasures

Fault Model

Random Fault Model

As in the original paper, it is considered that an attacker can:

- modify a value in memory with a random value (permanent fault)
- modify a value during the computation with a random value (transient fault)
- not modify the code execution or Boolean results of comparisons

(日) (日) (日) (日) (日) (日) (日)

not inject permanent faults in p, q, d_p, d_q, i_q.
(associated to an integrity value)

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance: Attack

Reading RSA-CRT pseudo-code in the original paper:

•
$$d'_p = d_p + R_1 \cdot (p-1)$$

• Check that d'_p ? = $d_p \mod (p-1)$

A natural way of implementing these steps is to perform the following:

(日) (日) (日) (日) (日) (日) (日)

- pminusone = p 1
- $d'_p = d_p + R_1 \cdot pminusone$
- Check that d'_p ? = $d_p \mod pminusone$

• The value of *pminusone* is not used anymore

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance: Attack

Reading RSA-CRT pseudo-code in the original paper:

•
$$d'_p = d_p + R_1 \cdot (p-1)$$

• Check that d'_p ? = $d_p \mod (p-1)$

A natural way of implementing these steps is to perform the following:

- pminusone = p 1
- $d'_p = d_p + R_1 \cdot pminusone$
- Check that d'_p ? = $d_p \mod pminusone$
- The value of *pminusone* is not used anymore

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance: Attack

Reading RSA-CRT pseudo-code in the original paper:

•
$$d'_p = d_p + R_1 \cdot (p-1)$$

• Check that d'_p ? = $d_p \mod (p-1)$

A natural way of implementing these steps is to perform the following:

● pminusone = p - 1 ⇐ sensitive to transient or permanent fault

- $d'_p = d_p + R_1 \cdot pminusone$
- Check that d'_p ? = $d_p \mod pminusone$
- The value of *pminusone* is not used anymore

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance: Attack

Reading RSA-CRT pseudo-code in the original paper:

•
$$d'_p = d_p + R_1 \cdot (p-1)$$

• Check that d'_p ? = $d_p \mod (p-1)$

A natural way of implementing these steps is to perform the following:

• $pminusone = p - 1 \Leftarrow sensitive to transient or permanent fault$

- $d'_p = d_p + R_1 \cdot pminusone$
- Check that $d'_p ? = d_p \mod pminusone$ Test true even if pminusone faulty
- The value of *pminusone* is not used anymore

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance: Attack

The attacker injects a transient fault in *pminusone* computation, or a permanent fault in *pminusone* juste before d'_p computation

Thus the attacker obtains a faulty \underline{S} which is faulty only modulo p

(日) (日) (日) (日) (日) (日) (日)

The attacker can perform a gcd attack to recover $p = \gcd(\underline{S}^e - m \mod N, N)$

Fault Attacks and Countermeasures

Exponent randomization Disturbance

Exponent randomization Disturbance: Countermeasures

A secure implementation must:

 Either use *pminusone* in the sequel of the signature calculation: Indeed, recompute *p* from *pminusone*: Add a step *p* = *pminusone*+1

• Or compute *pminusone* twice and verify that both results are equal

(日) (日) (日) (日) (日) (日) (日)

The same holds for *qminusone*

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance: Attack

In the original paper, final steps are exactly written as follows:

▲□▶▲□▶▲□▶▲□▶ □ のQで

•
$$N = pq$$

• Check
$$N.[S - R_4 - qi_q.(R_3 - R_4)] \mod Nr^2$$
? = 0

and $q.i_q \mod p$? = 1

• Return S mod N if all checks positive

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance: Attack

In the original paper, final steps are exactly written as follows:

(日) (日) (日) (日) (日) (日) (日)

• $N = pq \Leftarrow$ sensitive to transient fault

• Check
$$N.[S - R_4 - qi_q.(R_3 - R_4)] \mod Nr^2$$
? = 0

and $q.i_q \mod p$? = 1

• Return S mod N if all checks positive

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance: Attack

In the original paper, final steps are exactly written as follows:

(日) (日) (日) (日) (日) (日) (日)

• $N = pq \Leftarrow$ sensitive to transient fault

• Check $N.[S - R_4 - qi_q.(R_3 - R_4)] \mod Nr^2$? = 0 Test true whatever is Nand $q.i_q \mod p$? = 1

• Return S mod N if all checks positive

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance: Attack

The attacker injects a transient fault in *p* during the computation of *N*, $\underline{N} = \underline{p} \times q$

 $S \mod \underline{N}$ is returned

The attacker has a signature faulty modulo p, and correct modulo q

(日) (日) (日) (日) (日) (日) (日)

Again, he can compute $p = \gcd(\underline{S}^e - m \mod N, N)$

Fault Attacks and Countermeasures

Modulus Computation Disturbance

Modulus Computation Disturbance: Countermeasure

Clear need to verify the integrity of the modulus. It can be done through different simple ways, for instance:

- Replace "Check $N.[S R_4 qi_q.(R_3 R_4)] \mod Nr^2$? = 0 " by "Check $p.q.[S - R_4 - qi_q.(R_3 - R_4)] \mod Nr^2$? = 0 " before returning $S \mod N$
- Add a final step "Check N.i_{qr} mod r² ? = p mod r² " before returning S mod N
- Select a random *T*, compute *T_p* = *p* mod *T*, *T_q* = *q* mod *T* and add a final step "Check that *N* mod *T* ? = *T_p*.*T_q* mod *T*" before returning *S* mod *N*

(日) (日) (日) (日) (日) (日) (日)

• . . .

Fault Attacks and Countermeasures on Vigilant's RSA-CRT Algorithm

Conclusion

Outline

Background and Context

- CRT-RSA system
- Vigilant's Secure Ring Exponentiation (CHES '08)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Application to RSA-CRT

Pault Attacks and Countermeasures

- Fault Model
- Exponent randomization Disturbance
- Modulus Computation Disturbance

3 Conclusion

Conclusion

Conclusion

We have shown 2 attacks:

- **Modulus computation disturbance**: A transient fault in *p* or *q* during the modulus computation before final reduction ...
- **Exponent randomization disturbance**: A transient fault during p-1 or q-1 computation, or a permanent fault in p-1 and q-1 values before the computation of d'_p or $d'_q \dots$

They allow performing \gcd attacks and recovering the secret key on Vigilant's RSA-CRT algorithm

We have given simple countermeasures thwarting both attacks

- Verification of modulus integrity, before returning the result
- Verification or reusing of p-1 and q-1 values

Conclusion

Since countermeasures have a negligible cost,

The combination of the original scheme with presented countermeasures

- Remains well-suited to constraints of embedded device
- Gives very high level of fault detection capability when public exponent is unknown

These attacks may impact most of others RSA-CRT schemes

(e.g.) Exponent randomization disturbance feasible on Aumüller et al.'s scheme (CHES'02)

 \Rightarrow Impact of attacks on all other schemes to be evaluated

Conclusion

Thanks for your attention

Any Questions?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ