your partner in security approval

> Fault Injection, a fast moving target in evaluations

Outline

- Commonly used fault injection methods
- Not so commonly used fault injection methods
- Fault attacks in the real world
- Practical considerations
- Common practice for security labs
- Near future attack scenarios
- Rating tables
- What if this goes on?
- Sense and non-sense
- Conclusion

Security evaluation participants – DEVELOPER

- Is primarily interested in a certificate
- □ Is, at best, interested in vulnerabilities for future products
- Has a customer who is pushing the dead-line
- Is working on a future product because the TOE is already "finished"
- Performs most of the work
- Sponsor of the evaluation process
- Does 9 out of 10 times a very good job
- Raises the evaluation effort for commercial reasons (EAL6, EAL7+)

□ THESE ARE NOT ACCUSATIONS, THIS IS HOW BUSINESS WORKS

 Task: develop products that are up for the job with sufficient security against reasonable costs

Security evaluation participants – LAB

- Is pushed for the dead-line by the developer
- Needs documentation and samples before the evaluation can start (delivery shifts, dead-line shifts not)
- Is always too expensive and too slow
- Needs to develop tools that support new technology (NFC, SWP, etc.)
- Needs to keep up with developments of attack techniques
- Evaluation outcome is unpredictable (broken for unclear reasons)

THESE ARE NOT ACCUSATIONS, THIS IS HOW BUSINESS WORKS

 Task: Perform a security assessment with sufficient assurance within a reasonable amount of time and cost

Security evaluation participants – CERTIFICATION BODY

- Has no commercial interest
- Aims at optimal security to avoid liability
- Considers any possible attack scenario equally important
- THESE ARE NOT ACCUSATIONS, THIS IS HOW BUSINESS WORKS
- Task: Overseer of the evaluation process

Commonly used fault injection methods

- Active probing
- Voltage glitching
- Light flashing

Not so commonly used fault injection methods

Less practical

- □ High voltage pulse
- Magnetic pulse
- Radio active sources
- Solved by common practice technology
 - Reset glitching
 - Clock glitching

Fault attacks in the real world

Practical attacks performed by hackers, not security labs or university

- calling cards (public phone)
- pay TV cards
- micro controllers (lock bit)
- mass unblocking of chips in production line (>300,000 chips with 100% hit rate)
- All attacks performed using Voltage Glitching!
- All attacks have attack level basic!

Practical considerations

- What does the lab have what I (attacker) haven't got?
- Developer information
 - Design knowledge of the hardware
 - Design knowledge of the software (source code)
 - Timing indication or control about the timing
- Easy access to different attack technologies
 - Etching
 - Reverse engineering
 - Power consumption analysis tools
 - Lots of equipment and expertise (power supplies, function generators, oscilloscopes, high-end pulse generators, laser cutters, high power CW lasers, 35 fellow experts)

Common practice for security labs

- Voltage glitches
 - Multiple glitches
 - \Box -20V < Vglitch < +20V
 - Tglitch > 8ns increasing in 1ns steps

Light flashes

- Tflash => nanoseconds (laser cutter)
- Tflash >= nanoseconds and longer (solid state laser)
- □ NIR, red, green
- Multiple flash (slow)(20ms laser cutter)
- Multiple flash (fast)(nanoseconds solid state laser)
- □ Single location
- Basic countermeasure detection

Multiple flash (slow) example

- The flashes must be at sufficient interval > 20ms
- Applicable on RSA calculation with DFA countermeasure double calculation.

Steps:

- Execute a RSA calculation
- □ Flash during the first RSA calculation
- Flash at (approximately) the same instruction of the second RSA calculation
- If both results are the same the DFA countermeasure will fail detection
- Only requires a low repetition rate laser
- Works because RSA is slow and the attacker can use Waiting Time extensions (WTX) to re-arm the laser

DFA(OK,ERR) = KEY

brightsight® your partner in security approval

Multiple flash (fast) example

- The flashes will follow each other at very short intervals
- Applicable also on fast algorithms such as DES with DFA countermeasure double calculation.

Steps:

- Execute a DES calculation
- Flash during the first DES calculation
- Flash during the second DES computation
- If both results are the same the DFA countermeasure will fail detection

This requires

- □ a fast re-triggerable laser
- Accurate trigger source

brightsight® your partner in security approval

Near future attack scenarios

- Light flashes on two locations
- Light flashes on many locations

Two locations example

- The flashes will follow each other at very short intervals
- Applicable also on fast algorithms such as DES with DFA countermeasure reverse calculation.

Steps:

- Execute a DES calculation
- Flash during the first DES calculation
- Flash during the compare performed as DFA countermeasure so it will fail detection

This requires

- A laser set-up capable of flashing at two locations
- Accurate trigger source

Two locations – possible solutions

Acousto-optic modulator

Dual lasers

□ Fibers on chip surface

Light flashes on many locations example

- □ The flashes will occur at the same time
- Applicable also on fast algorithms such as DES with DFA countermeasure that implements two separate crypto processors.

Steps:

- Execute a DES calculation
- Flash during the DES calculation at both coprocessors
- □ The compare performed as DFA countermeasure will fail detection

This requires

- a many locations capable laser set-up
- Accurate trigger source

brightsight® your partner in security approval

Rating factors

- Time
- Expertise
- Knowledge of TOE
- Access to TOE
- Equipment
- Open samples

Factors	Identification	Exploitation	
Elapsed time		-	
< one hour	0	0	
< one day	1	3	
< one week	2	4	
< one month	3	6 8	
> one month	5		
Not practical	*	*	
Expertise			
Layman	0	0	
Proficient	2	2	
Expert	5	4	
Multiple Expert	7	6	
Knowledge of the TOE			
Public	0	0	
Restricted	2	2	
Sensitive	4	3	
Critical	6	5	
Very critical hardware design	9	NA	
Access to TOE			
< 10 samples	0	0	
< 100 samples	2	4	
> 100 samples	3	6	
Not practical	*	*	
Equipment			
None	0	0	
Standard	1	2	
Specialized (1)	3	4	
Bespoke	5	6	
Multiple Bespoke	7	8	
Open samples (rated according to			
access to open samples)		274	
Public	0	NA	
Restricted	2	NA	
Sensitive	4	NA	
Critical	6	NA	

Rating table example

Factor	Identification Exploitation			
Time	< 1 week	1 day		
	(2)	(3)		
Expertise	Expert	Proficient		
	(5)	(2)		
Knowledge	Restricted	Public		
	(2)	(0)		
Access	< 10	< 10		
	(0)	(0)		
Equipment	Specialized	Specialized		
	(3)	(4)		
Open Samples	None	NA		
	(0)	(0)		
Points Sub Total	12	9		
Total	21			

Rating

Equipment	identification	exploitation	
None	0	0	points
Standard	1	2	points
Specialized	3	4	points
Bespoke	5	6	points
Multiple bespoke	7	8	points
Laser cutter without an with supporting equipm with advanced trigger of with dual laser beam:	specialized specialized specialized specialized		

What if this goes on?

Increasing requirements for test set-up capabilities

- Triple or quadruple laser beams
- Highly advanced countermeasure detection systems
- Multiple side-channel combinations (SPA, EMA)
- Hugh number of knob positions results in long testing times
 - Laser intensity flash 1, Laser intensity flash 2
 - Wavelength 1, wavelength 2
 - Position 1, Position 2
 - □ Timing 1, Timing 2
 - Silicon side, metal side
- □ A practical approach is required to keep testing feasible!

Sense and non-sense

- Breaking of a system shall be hard enough to make it unattractive/unprofitable
- Experiments that have been published were often applicable on a particular implementation which are not always state-of-the-art or open samples
- Every published attack IS important but should be evaluated for practical applicability and relevance for the product or type of products
- □ There is a limitation on the time spent on testing.

Conclusion

- Fault injection attacks have special attention from the certification bodies
- Some developments are really powerful
- The complexity of the considered attacks is increasing rapidly
- There is a risk that complicated attacks distract the attention from simpler and more threatening attacks (unjust assurance)
- Testing costs will increase over time