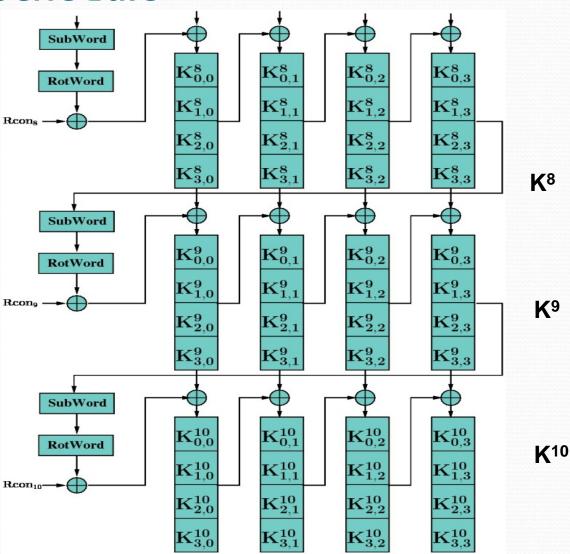
# A Differential Fault Analysis on AES Key Schedule Using Single Fault

Sk. Subidh Ali and Debdeep Mukhopadhyay

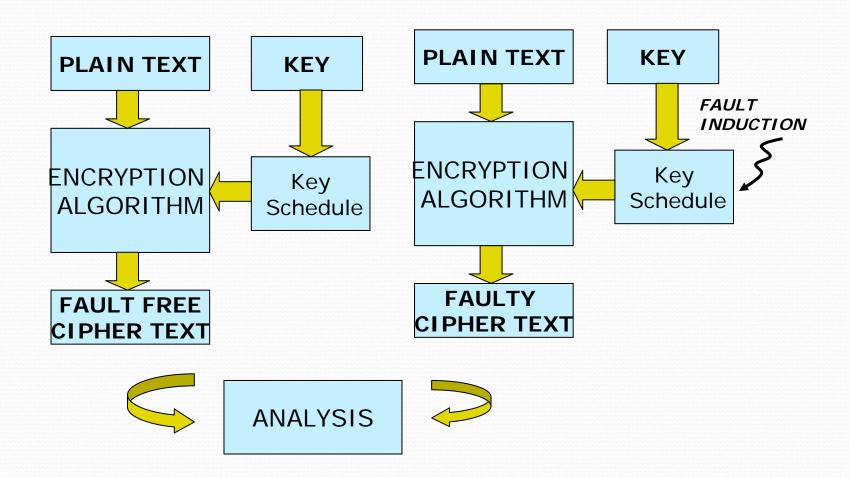


Dept. of Computer Science and Engineering
IIT Kharagpur

### Outline


- Introduction
- Recent contributions
- Proposed DFA against AES-128 key schedule
  - Fault model used
  - Attack mechanism
  - Time complexity reduction
  - Experimental results
- Conclusions

### Introduction


- Differential Fault Analysis (DFA) uses the difference between the correct and faulty ciphertexts to deduce the secret key
- Required:
  - To induce fault in a particular location
  - Pair of fault-free and faulty ciphertexts
- The target of the attack can be either an intermediate state of AES or the key schedule

AES-128 Key Schedule

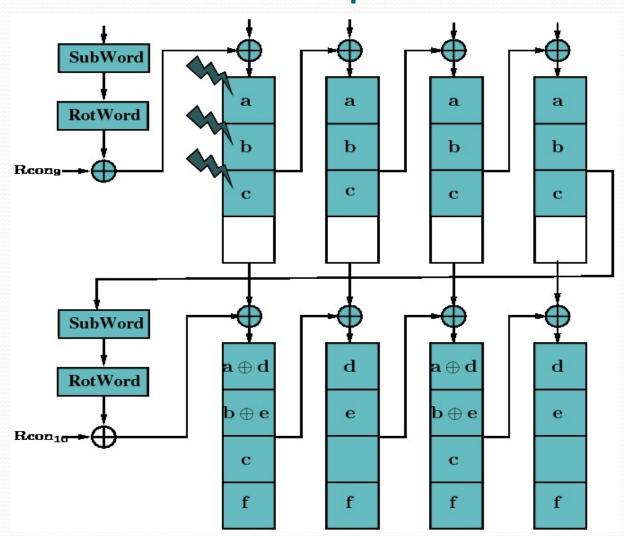
Knowledge of any one round key is enough to get the master key



### Illustration of a DFA on AES Key Schedule



10/29/2011


## DFA against AES-128 Key Schedule

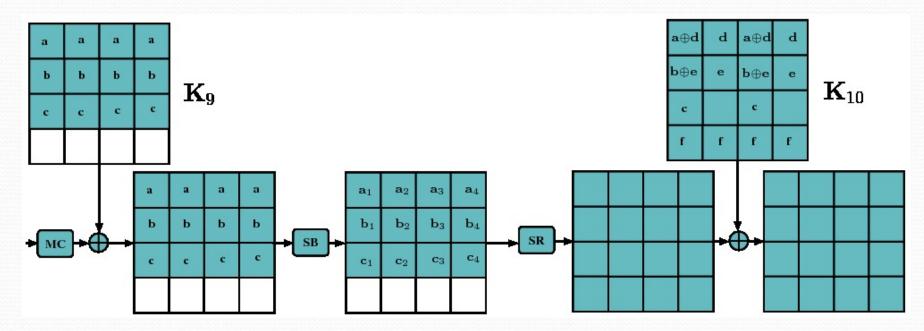
- Introduced by Christophe Giraud, 2003.
- Chen and Yen (2003): 22-44 faulty ciphertexts.
- Peacham and Thomas (2006): 12 faulty ciphertexts.
- Takahashi et al. (FDTC 2007): 2 faulty ciphertexts with 48-bit brute-force search.
- Kim et al. (2007): 2 faulty ciphertexts with 32-bit brute-force search.
- Our attack in CARDIS'2011: I faulty ciphertext with 32-bit brute-force search.

### Fault Model

- Single Byte Fault
  - Attacker induces single byte fault at the first column of the 8<sup>th</sup> round key during execution of key schedule.
  - > Fault subsequently propagates to 9th and 10th round key.
  - > No knowledge is required of the fault value

### Kim and Quisquater's attack in 2008




#### **Required faults:**

Faults induced in 3 bytes out of 4 in the first column of 9<sup>th</sup> round key-schedule.

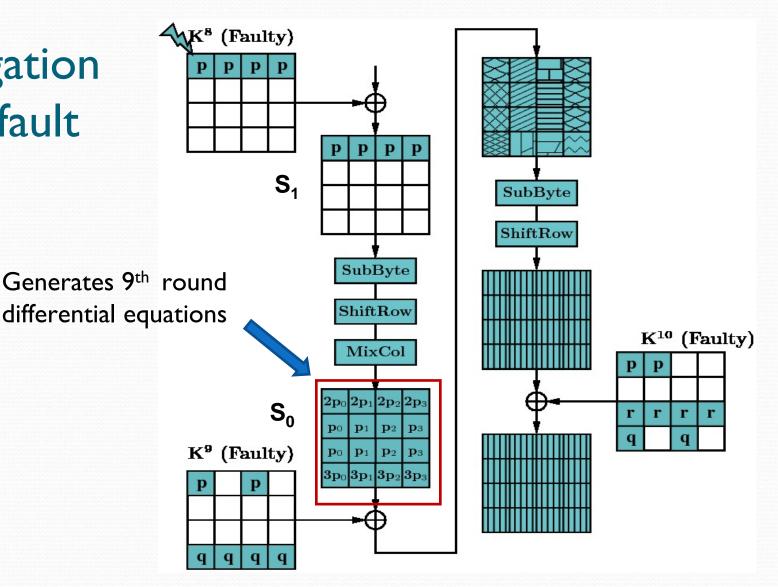
10/29/2011

FDTC 2011 Nara, Japan

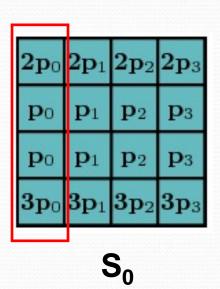
### Propagation of the fault pattern



Requires two faulty ciphertexts (each with 3 simultaneous byte faults) to retrieve 12 bytes of the AES 10<sup>th</sup> round key.


Thus brute force search of 232 is still needed!

10/29/2011 FDTC 2011 Nara, Japan 9


# Motivations for a stronger fault attack on the AES key-schedule

- The attack's fault model should be practical.
  - More restrictions reduce the probability of success.
  - Larger number of faulty ciphertexts also reduce the probability of success.
- Can we perform the attack with one fault?
- The present attack:
  - Relies on a single-byte fault
  - Performs the attack with a single faulty ciphertext

# Propagation of the fault



### 8th Round Differential Equations



First column state matrix  $S_0$  gives the following equations:

$$p \oplus 2p_{0} = S^{-1}(C_{0,0} \oplus K^{10}_{0,0}) \oplus S^{-1}(C^{*}_{0,0} \oplus K^{10}_{0,0} \oplus p)$$

$$p_{0} = S^{-1}(C_{1,3} \oplus K^{10}_{1,3}) \oplus S^{-1}(C^{*}_{1,3} \oplus K^{10}_{1,3})$$

$$p_{0} = S^{-1}(C_{2,2} \oplus K^{10}_{2,2}) \oplus S^{-1}(C^{*}_{2,2} \oplus K^{10}_{2,2} \oplus r)$$

$$q \oplus 3p_{0} = S^{-1}(C_{3,1} \oplus K^{10}_{3,1}) \oplus S^{-1}(C^{*}_{3,1} \oplus K^{10}_{3,1})$$

#### **Attack Results**

- Fault Model: Single Byte fault in the 8<sup>th</sup> round first column of AES key.
- Number of Faults: I
- Keys remaining after the attack: 28.
- Time complexity of the attack is 2<sup>35</sup>.
  - Improves our previous attack in CARDIS II, which requires 2<sup>32</sup> brute force key searches with a single byte multiple byte fault in the first column of the 9<sup>th</sup> round AES key.

### **Experimental Results**

The simulated attack was tested on 3 GHz Intel core 2 Duo processor running Linux (Ubuntu 10.4).

| Random 128-bit AES Key           | Number of Key<br>Hypotheses    | Running Time<br>(Minutes) |
|----------------------------------|--------------------------------|---------------------------|
| 6f6cd764b8ab8f18b8a86764237147cd | 253 =2 <sup>7.08</sup>         | 33.677                    |
| 9c1933a4f7238613f85db821f4e49e65 | 262=2 <sup>8.03</sup>          | 35.716                    |
| f0003d186fd9c1282c2c7b3f578f39e8 | 262=2 <sup>8.03</sup>          | 35.291                    |
| d4e278834cfe91970bcb5eaf2317623a | 2 <b>8</b> 1=2 <sup>8.13</sup> | 36.716                    |
| 71d1e622409256bbDade1874f57bd79c | 266=2 <sup>8.05</sup>          | 35.516                    |
| 9c1b15b1b49d76ad9dc359d265b52c84 | 264=2 <sup>8.04</sup>          | 36.666                    |

FDTC 2011 Nara, Japan

# Comparison with previous Works

| Reference                 | Fault Model | Number of<br>Faults | Exhaustive<br>Search |
|---------------------------|-------------|---------------------|----------------------|
| Chen & Yen                | Single Byte | 22 to 44            | 1                    |
| Peacham et. al.           | Multi Byte  | 12                  | 1                    |
| Takahashi et.al.          | Multi Byte  | 2                   | 2 <sup>48</sup>      |
| Kim et. al.               | Multi Byte  | 2                   | $2^{32}$             |
| Our attack in CARDIS 2011 | Multi Byte  | 1                   | $2^{32}$             |
| Our attack                | Single Byte | 1                   | 28                   |

# DFA on AES Key-schedule vs DFA on AES datapath

- This attack shows that a single byte fault, in the AES-128 key schedule, reduces the AES key size to 2<sup>8</sup> values:
  - This result is analogous to the single byte fault induction in the AES-128 datapath, where also the remaining key size is 2<sup>32</sup> (published in WISTP 11).
  - However the time complexity in this present attack is  $2^{35}$ , while for the datapath it was  $2^{30}$

#### Conclusions

- We proposed an improved DFA on AES-128 key-schedule using single byte-fault
- DFA on AES-128 key schedule has almost the same effectiveness as the DFA on AES-datapath
- > Both requires a single fault

# Thank You

Please write to us if you have any question at subidh@gmail.com,debdeep@cse.iitkgp.ernet.in