### From AES-128 to AES-192 and AES-256, How to Adapt Differential Fault Analysis Attacks on KeyExpansion FDTC 2011, Nara, Japan

Noémie Floissac and Yann L'Hyver

SERMA TECHNOLOGIES ITSEF 30, Avenue Gustave Eiffel, 33608 PESSAC CEDEX, FRANCE Email: {n.floissac;y.lhyver}@serma.com

28<sup>th</sup> September 2011



#### Overview

Adaptation of DFA to AES-192 and AES-256 DFA on KeyExpansion of AES-192 and AES-256 Results and conclusion

### Background

#### AES

- Symmetric algorithm based on iterations of SubBytes, ShiftRows, MixColumn and AddRoundKey
- Each round key is provided by KeyExpansion algorithm
- 3 variants : AES-128, AES-192 and AES-256

#### DFA on AES-128

- General concept : fault injection on last rounds, differential analysis of correct and faulty results, obtain (last round) key
- Attack performed on State and KeyExpansion



Overview

Adaptation of DFA to AES-192 and AES-256 DFA on KeyExpansion of AES-192 and AES-256 Results and conclusion

### DFA on AES-192 and AES-256

#### Fault on State

- From 2010 : several papers present DFA on these variants
- Based on DFA on AES-128 : A. Barenghi and al

#### Fault on KeyExpansion

Nothing presented concerning full AES key recovery





### Adapt DFA on KeyExpansion from AES-128 to AES-192 and AES-256



∃ → < ∃ →</p>

l**dea** KeyExpansion algorithm

### Methodology used on AES-192 and AES-256

Let **N** last AES round

#### Extension

- Inject fault on the last rounds like for DFA on AES-128
- Retrieve last round key  $K_N$

#### Reproduction

Aim : Retrieve respectively the 8 and 16 bytes of missing key

- Inject fault like for extension but on the previous round
- Reduce AES help to inverse MixColumn trick : Let  $C=S_{SR,N-1}\oplus I\_MC(K_{N-1})$
- Exploit the faulty result at end of penultimate round
- Retrieve penultimate round key  ${\bf K}_{{\bf N}-1}$

Idea KeyExpansion algorithm

### AES variant differences

#### Case AES-192

- $\bullet\,$  RotWord and SubWord are not applied on last column  $K_{10}$
- $\bullet$  2 first columns of  $K_{11}$  depend on 2 last columns of  $K_{10}$
- 2 last columns of  $K_{11}$  do not impact 2 last columns of  $K_{12}$

#### Case AES-256

- Only SubWord is applied on last column of  $K_{12}$
- All columns of  $K_{14}$  depend on 4 columns of  $K_{12}$
- Columns of  ${\sf K}_{13}$  do not impact columns of  ${\sf K}_{14},$  except the last one : RotWord and SubWord transformations

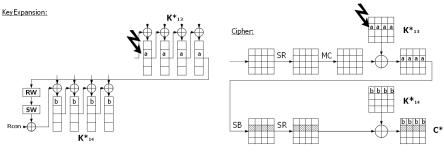


Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### Goal

#### Original attack

DFA on KeyExpansion of AES-128 : C. H. Kim and J.-J. Quisquater, 2008


#### Attack on AES-192 and AES-256

Apply technics used on original attack with the previous methodology



Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on KeyExpansion AES-256 : Extension





Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### Extension : analysis I

#### Differences with original attack

- Fault injected on line i
- AES-192 :
  - $K_{12}^*\{i,j\}=K_{12}\{i,j\},$  whenever j equals to 0, 1 or 3
  - $\mathsf{K}_{12}^*\{i,j\}=\mathsf{K}_{12}\{i,j\}\oplus a,$  whenever j equal to 2
- AES-256 :
  - $\mathsf{K}_{14}^*\{i,j\}=\mathsf{K}_{14}\{i,j\},$  for all j
- Original equation is still true : for a given byte {i, (j i)[4]}, where j in [0..3]

$$\mathbf{a} = \mathsf{I}\_\mathsf{Sb}(\mathsf{C} \oplus \mathsf{K}_{\mathsf{N}}) \ \oplus \ \mathsf{I}\_\mathsf{Sb}(\mathsf{C}^* \oplus \mathsf{K}_{\mathsf{N}}^*)$$

 $\bullet\,$  Exhaustive search on each byte of  $K_N$  and check on a

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### Extension : analysis II

#### Exploitation

- $\bullet$  2 couples  $(\bm{C}_1, \bm{C}_1^*)$  and  $(\bm{C}_2, \bm{C}_2^*)$  for each line targeted
- $\bullet$  Inject a fault on each line of first column of  $K_{N-1}$
- Retrieve K<sub>N</sub>

#### $K_{N-1}$

- Diffusion gives :  $b=Sb(K_{N-1}\{i,3\}\oplus a)\oplus Sb(K_{N-1}\{i,3\}),$
- 2 couples (**a**,**b**) known for each line
- Exhaustive search on each byte of  $K_{N-1}\{.,3\}$



Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### Extension : conclusions

#### AES-192

- K<sub>12</sub> is found
- 4 bytes of  $K_{11}$  missing :
  - Exhaustive search
  - Reproduction of DFA on KeyExpansion

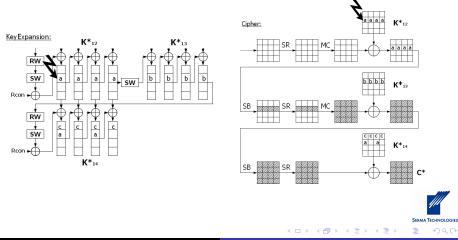


Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### Extension : conclusions

#### AES-192

- K<sub>12</sub> is found
- 4 bytes of  $K_{11}$  missing :
  - Exhaustive search
  - Reproduction of DFA on KeyExpansion


#### AES-256

- K<sub>14</sub> is found
- 12 bytes of  $K_{13}$  missing : reproduction of DFA on KeyExpansion



Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### Reproduction : Fault diffusion on AES-256



Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

SERMA TECHNOLOGIES

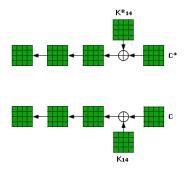
### DFA on AES-256 : analysis

#### Reproduction : Find $K_{14}^*$

- Retrieve **a** and **c**
- Line i of injection unknown
- Diffusion gives for a given **i** :
  - $\textbf{a}=K_{12}\{i,j\}\oplus K_{12}^*\{i,j\},$  where j in [0..3]
  - $b = \mathsf{Sb}(\mathsf{K}_{12}\{i,3\} \oplus \mathsf{a}) \oplus \mathsf{Sb}(\mathsf{K}_{12}\{i,3\})$
  - $c=Sb(K_{13}\{i,3\}\oplus b)\oplus Sb(K_{13}\{i,3\})$
  - We have :
    - $\begin{array}{l} c = Sb(\mathsf{K}_{13}\{i,3\}\oplus Sb(\mathsf{K}_{12}\{i,3\}\oplus a)\oplus Sb(\mathsf{K}_{12}\{i,3\}))\\ \oplus \ Sb(\mathsf{K}_{13}\{i,3\}) \end{array}$
- $\bullet~$  Columns 2 and 3 of  $K_{14}$  known :  $K_{12}\{i,3\}$  is known
- Extension :  $K_{13}\{i, 3\}$  is known

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation

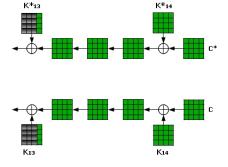

#### Exploitation

- $\bullet$  Search on a and i gives hypotheses on  $K^*_{14}$
- Correct and faulty output known : Use Inverse MixColumn trick with  $K^*_{14}$  and  $K_{14}$  to obtain  $\bm{S}_{ARK,13}$
- Find good hypothesis on  $K_{14}^*$



Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation I

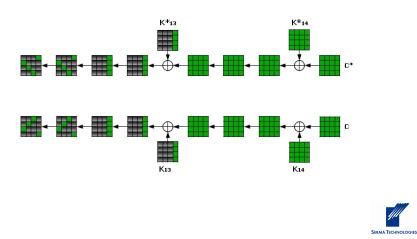



米部 米油 米油 米油



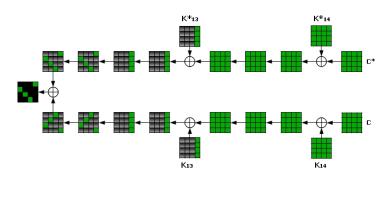
Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation l






E > < E
 </p>

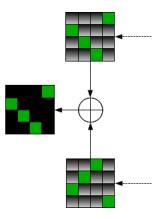

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation l



Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation l

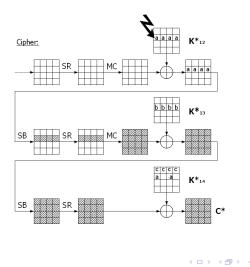





3 N

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation I

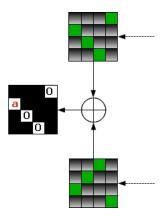





글 🕨 🔺 글

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation l

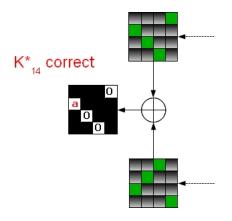





3 →

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation I






글 🕨 🔺 글

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation l





E > < E
</p>

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation II

#### Second step of reproduction

- Known Data :
  - $\bullet~K_{14}$  and  $K_{14}^{*}$
  - i, <u>a</u> and b

• 
$$C' (= S_{SR,13} \oplus I\_MC(K_{13}))$$
 and  $C'^* (= S^*_{SR,13} \oplus I\_MC(K^*_{13}))$ 

- Let  $K' = I\_MC(K_{13})$  and  $K^{'*} = I\_MC(K_{13}^*)$
- Solve equation : for a given byte {i, (j i)[4]}, where j in [0..3]  $\mathbf{a} = I\_Sb(C' \oplus K') \oplus I\_Sb(C'^* \oplus K' \oplus b)$
- Exhaustive search on  $K'\{i, (j-i)[4]\}$

Introduction Extension on AES-192 and AES-256 Reproduction on AES-256

### DFA on AES-256 : exploitation III

#### End of adaptation

- 2 couples  $(C_1', C_1^{'*})$  and  $(C_2', C_2^{'*})$  give 4 bytes of  $K^{'}$
- Reiteration of attack for each line gives  $\mathbf{K}'$
- $\bullet~$  Retrieve  $K_{13}$  and so initial AES key





#### First DFA on KeyExpansion of AES-192 and AES-256 variants

- Adaptation of existing attack
- Twice the number of faults of the original attack : a total of 16





#### First DFA on KeyExpansion of AES-192 and AES-256 variants

- Adaptation of existing attack
- Twice the number of faults of the original attack : a total of 16

#### Conclusion

- DFA on KeyExpansion can be adapted
- DFA on KeyExpansion of AES-192 and AES-256 is more complex than original attack on AES-128
- Subject is still open



## Thank you for your attention.

# Any Questions???

