From AES-128 to AES-192 and AES-256, How to Adapt Differential Fault Analysis Attacks on KeyExpansion

FDTC 2011, Nara, Japan

Noémie Floissac and Yann L’Hyver

SERMA TECHNOLOGIES ITSEF
30, Avenue Gustave Eiffel, 33608 PEassa CEDEX, FRANCE
Email: \{n.floissac;y.lhyver\}@serma.com

28th September 2011
Overview

Adaptation of DFA to AES-192 and AES-256
DFA on KeyExpansion of AES-192 and AES-256
Results and conclusion

Background

AES

- Symmetric algorithm based on iterations of SubBytes, ShiftRows, MixColumn and AddRoundKey
- Each round key is provided by KeyExpansion algorithm
- 3 variants: AES-128, AES-192 and AES-256

DFA on AES-128

- General concept: fault injection on last rounds, differential analysis of correct and faulty results, obtain (last round) key
- Attack performed on State and KeyExpansion
Overview

DFA on AES-192 and AES-256

Fault on State
- From 2010: several papers present DFA on these variants
- Based on DFA on AES-128: A. Barenghi and al

Fault on KeyExpansion
- Nothing presented concerning full AES key recovery
Adapt DFA on KeyExpansion from AES-128 to AES-192 and AES-256
Methodology used on AES-192 and AES-256

Let N last AES round

Extension
- Inject fault on the last rounds like for DFA on AES-128
- Retrieve last round key K_N

Reproduction

Aim: Retrieve respectively the 8 and 16 bytes of missing key
- Inject fault like for extension but on the previous round
- Reduce AES help to inverse MixColumn trick:

 $C = S_{SR,N-1} \oplus I_{MC}(K_{N-1})$

 - Exploit the faulty result at end of penultimate round
 - Retrieve penultimate round key K_{N-1}
AES variant differences

Case AES-192
- RotWord and SubWord are not applied on last column K_{10}
- 2 first columns of K_{11} depend on 2 last columns of K_{10}
- 2 last columns of K_{11} do not impact 2 last columns of K_{12}

Case AES-256
- Only SubWord is applied on last column of K_{12}
- All columns of K_{14} depend on 4 columns of K_{12}
- Columns of K_{13} do not impact columns of K_{14}, except the last one: RotWord and SubWord transformations
Overview
Adaptation of DFA to AES-192 and AES-256
DFA on KeyExpansion of AES-192 and AES-256
Results and conclusion

Introduction
Extension on AES-192 and AES-256
Reproduction on AES-256

Goal

Original attack

Attack on AES-192 and AES-256
Apply technics used on original attack with the previous methodology
DFA on KeyExpansion AES-256: Extension

KeyExpansion:

Cipher:

N. Floissac and Y. L’Hyver, SERMA TECHNOLOGIES ITSEF

From AES-128 to AES-192 and AES-256, How to Adapt ...
Overview

Adaptation of DFA to AES-192 and AES-256

DFA on KeyExpansion of AES-192 and AES-256

Results and conclusion

Introduction

Extension on AES-192 and AES-256

Reproduction on AES-256

Extension: analysis I

Differences with original attack

- Fault injected on line \(i \)
- AES-192:
 - \(K^*_{12}\{i,j\} = K_{12}\{i,j\} \), whenever \(j \) equals to 0, 1 or 3
 - \(K^*_{12}\{i,j\} = K_{12}\{i,j\} \oplus a \), whenever \(j \) equal to 2
- AES-256:
 - \(K^*_{14}\{i,j\} = K_{14}\{i,j\} \), for all \(j \)
- Original equation is still true: for a given byte \(\{i, (j - i)[4]\} \), where \(j \) in \([0..3]\)
 - \(a = \text{I}_\text{Sb}(C \oplus K_N) \oplus \text{I}_\text{Sb}(C^* \oplus K^*_N) \)
- Exhaustive search on each byte of \(K_N \) and check on \(a \)
Extension: analysis II

Exploitation

- 2 couples \((C_1, C_1^\ast)\) and \((C_2, C_2^\ast)\) for each line targeted
- Inject a fault on each line of first column of \(K_{N-1}\)
- Retrieve \(K_N\)

\[K_{N-1}\]

- Diffusion gives: \(b = Sb(K_{N-1}\{i, 3\} \oplus a) \oplus Sb(K_{N-1}\{i, 3\})\).
- 2 couples \((a, b)\) known for each line
- Exhaustive search on each byte of \(K_{N-1}\{., 3\}\)
Overview

A daptation of DFA to AES-192 and AES-256

DF A on KeyExpansion of AES-192 and AES-256

Results and conclusion

Introduction

Extension on AES-192 and AES-256

Reproduction on AES-256

Extension : conclusions

AES-192

- K_{12} is found
- 4 bytes of K_{11} missing:
 - Exhaustive search
 - Reproduction of DFA on KeyExpansion

N. Floissac and Y. L’Hyver, SERMA TECHNOLOGIES ITSEF
AES-192

- K_{12} is found
- 4 bytes of K_{11} missing:
 - Exhaustive search
 - Reproduction of DFA on KeyExpansion

AES-256

- K_{14} is found
- 12 bytes of K_{13} missing: reproduction of DFA on KeyExpansion
Adaptation of DFA to AES-192 and AES-256

DF A on KeyExpansion of AES-192 and AES-256

Results and conclusion

Introduction

Extension on AES-192 and AES-256

Reproduction on AES-256

Reproduction : Fault diffusion on AES-256

N. Floissac and Y. L'Hyver, SERMA TECHNOLOGIES ITSEF

From AES-128 to AES-192 and AES-256, How to Adapt...

Overview
DFA on AES-256: analysis

Reproduction: Find K_{14}^*

- Retrieve a and c
- Line i of injection unknown
- Diffusion gives for a given i:
 - $a = K_{12}\{i, j\} \oplus K_{12}^*\{i, j\}$, where j in [0..3]
 - $b = Sb(K_{12}\{i, 3\} \oplus a) \oplus Sb(K_{12}\{i, 3\})$
 - $c = Sb(K_{13}\{i, 3\} \oplus b) \oplus Sb(K_{13}\{i, 3\})$
 - We have:

 \[
 c = Sb(K_{13}\{i, 3\}) \oplus Sb(K_{12}\{i, 3\} \oplus a) \oplus Sb(K_{12}\{i, 3\})) \\
 \oplus Sb(K_{13}\{i, 3\})
 \]
- Columns 2 and 3 of K_{14} known: $K_{12}\{i, 3\}$ is known
- Extension: $K_{13}\{i, 3\}$ is known
DFA on AES-256: exploitation

Exploitation

- Search on `a` and `i` gives hypotheses on K_{14}^*
- Correct and faulty output known: Use Inverse MixColumn trick with K_{14}^* and K_{14} to obtain $S_{ARK,13}$
- Find good hypothesis on K_{14}^*
DFA on AES-256: exploitation I

\[
K^{*14} \rightarrow C^* \\
K_{14} \rightarrow C
\]
Overview
Adaptation of DFA to AES-192 and AES-256
DFA on KeyExpansion of AES-192 and AES-256
Results and conclusion

Introduction
Extension on AES-192 and AES-256
Reproduction on AES-256

DFA on AES-256: exploitation I

N. Floissac and Y. L’Hyver, SERMA TECHNOLOGIES ITSEF
From AES-128 to AES-192 and AES-256, How to Adapt ...
DFA on AES-256: exploitation I

\[K_{13} \rightarrow K_{14} \rightarrow C^* \]

\[K_{13} \rightarrow K_{14} \rightarrow C \]
DFA on AES-256: exploitation I

\[K^{*13} \rightarrow K^{*14} \rightarrow C^* \]

\[K_{13} \rightarrow K_{14} \rightarrow C \]
DFA on AES-256: exploitation I
DFA on AES-256: exploitation I

N. Floissac and Y. L’Hyver, SERMA TECHNOLOGIES ITSEF

From AES-128 to AES-192 and AES-256, How to Adapt...
DFA on AES-256: exploitation I
DFA on AES-256: exploitation I
Overview

Adaptation of DFA to AES-192 and AES-256

DFA on KeyExpansion of AES-192 and AES-256

Results and conclusion

Introduction

Extension on AES-192 and AES-256

Reproduction on AES-256

DFA on AES-256 : exploitation II

Second step of reproduction

- **Known Data:**
 - K_{14} and K^*_{14}
 - i, a and b
 - $C' (= S_{SR,13} \oplus I_MC(K_{13}))$ and $C'^* (= S^*_{SR,13} \oplus I_MC(K^*_{13}))$

- Let $K' = I_MC(K_{13})$ and $K'^* = I_MC(K^*_{13})$

- Solve equation : for a given byte $\{i, (j - i)[4]\}$, where j in $[0..3]$
 - $a = I_Sb(C' \oplus K') \oplus I_Sb(C'^* \oplus K' \oplus b)$

- Exhaustive search on $K'\{i, (j - i)[4]\}$
DFA on AES-256: exploitation III

End of adaptation

- 2 couples \((C'_1, C'_1^*)\) and \((C'_2, C'_2^*)\) give 4 bytes of \(K'\)
- Reiteration of attack for each line gives \(K'\)
- Retrieve \(K_{13}\) and so initial AES key
Summary

First DFA on KeyExpansion of AES-192 and AES-256 variants

- Adaptation of existing attack
- Twice the number of faults of the original attack: a total of 16
First DFA on KeyExpansion of AES-192 and AES-256 variants

- Adaptation of existing attack
- Twice the number of faults of the original attack: a total of 16

Conclusion

- DFA on KeyExpansion can be adapted
- DFA on KeyExpansion of AES-192 and AES-256 is more complex than original attack on AES-128
- Subject is still open
Thank you for your attention.

Any Questions???