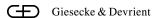
Differential Fault Analysis on the SHA1 Compression Function

Ludger Hemme and Lars Hoffmann

Giesecke & Devrient GmbH Munich

FDTC 2011 - 28. 09. 2011



Citation bug

■ Due to Bibtex-error please correct:

[20] Ruilin Li, Chao Li and Chunye Gong. Differential Fault Analysis on SHACAL-1. In *FDTC* 2009, pages 120-126. IEEE Computer Society, 2009.

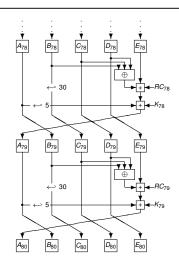
◆□▶ ◆問▶ ◆団▶ ◆団▶ ■ めぬべ

Agenda

- Previous work: DFA on SHACAL1 (Ruilin Li et al., FDTC 2009)
- Extension to the SHA1 compression function
- DFA on SHA1COMPR
- Computational optimization
- Fault model
- Simulation results
- Conclusion and ongoing work

SHACAL1

- SHACAL1 is a symmetric 160-bit block cipher
- SHACAL1: $\{0,1\}^{160} \times \{0,1\}^{512} \longrightarrow \{0,1\}^{160},$ $(P,K) \longmapsto C$
- It uses the building blocks of the SHA1 hash function without the final addition
- $P = A_0 ||B_0||C_0||D_0||E_0$
- $K = K_0 ||K_1|| \dots ||K_{15} \text{ and}$ $K_i = (K_{i-3} \oplus K_{i-8} \oplus K_{i-14} \oplus K_{i-16}) \leftarrow 1,$ $i = 16, 17, \dots, 79$



DFA on SHACAL1 - Theoretical background

- SHACAL equation: $(x \oplus \delta^{(j)}) x = \Delta^{(j)}$
 - with up to m pairs $(\delta^{(j)}, \Delta^{(j)})$ known, j = 1, ..., m
 - and x fixed and unknown.

FDTC 2011: Differential Fault Analysis on the SHA1 Compression Function

 \Rightarrow x can be determined by evaluating the carry flows of the addition:

$$\Rightarrow x_i = \delta_{i+1}^{(j)} \oplus \Delta_{i+1}^{(j)} \text{ if } \delta_i^{(j)} = 1, 0 \le i \le 30$$

 \Rightarrow x can be determined (except for the highest bit) if $\bigvee_{i=1}^{m} \delta^{(j)} = (*, 1, ..., 1)$

DFA on SHACAL1 (FDTC 2009)

- All shaded values are known to the attacker
- Induce errors in B₇₇
- Determine D_{78} (= E_{79}) using the SHACAL equation:

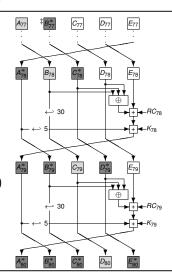
Taking the difference of the disturbed and undisturbed output of the \oplus -function yields:

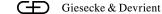
$$x = BCD_{78} = B_{78} \oplus C_{78} \oplus D_{78}$$

 $\delta = C_{78}^* \oplus C_{78}$

$$\Delta = (A_{79}^* - A_{79}) - ((A_{78}^* \longleftrightarrow 5) - (A_{78} \longleftrightarrow 5))$$

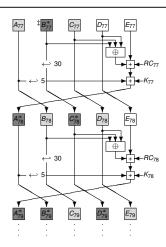
- Calculate K_{79} except for the highest bit
- Strip of the last round





DFA on SHACAL1 (2)

- Determine D_{77} (= E_{78}) using the SHACAL equation
- Calculate K_{78} (except for the highest bit)
- Repeat the steps above by inducing errors in B₇₅,..., B₆₃
- Use the key derivation function to calculate all round keys
- Validate the correct one with one plain/cipher pair

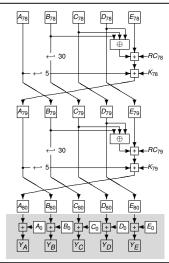


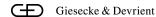
SHA1 Compression function (SHA1COMPR)

SHA1COMPR:

$$\begin{array}{c} \{0,1\}^{160} \times \{0,1\}^{512} \longrightarrow \{0,1\}^{160}, \\ (P,K) \longmapsto Y \end{array}$$

- SHA1COMPR(P, K) = $Y_A ||Y_B|| ... ||Y_E := (A_{80} + A_0)||(B_{80} + B_0)||... ||(E_{80} + E_0)$
- Only interested in the case $P = P(K_1)$ and $K = K(K_2)$ with some unknown K_1 and K_2
- The state $(A_{80}||B_{80}||C_{80}||D_{80}||E_{80})$ is not known to the attacker
- Use cases (fixed input, known output)
 - Key derivation functions
 - HMACs





DFA on SHA1COMPR - Theoretical background

SHA1 equation:

$$Y^{(j)} - X = \Phi^{(j)}$$

 $(Y^{(j)} \hookleftarrow t) - (X \hookleftarrow t) = \Psi^{(j)},$

- given the rotation parameter t
- with $\Phi^{(j)}$, $\Psi^{(j)}$ known, $Y^{(j)}$ random and unknown, $j = 1, \ldots, m$
- and $X = X_1 \cdot 2^{32-t} + X_0$ fixed and unknown.
- ⇒ By evaluation of the borrows at the borders you can determine X₁ and X₀ with falling probability from the left to the right

DFA on SHA1COMPR

- Elimination of the final addition
- Induce errors on A₇₉
- Build SHA1 equation:

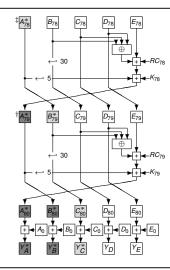
$$A_{79}^* - A_{79} = Y_B^* - Y_B$$

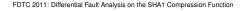
 $(A_{79}^* \hookleftarrow 5) - (A_{79} \hookleftarrow 5) = Y_A^* - Y_A$

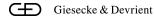
- Calculate remaining candidates for B₀
- Insert errors on A₇₈
- Build SHA1 equation to determine candidates for C₀ independent of B₀

$$(A_{78}^* \leftarrow 30) - (A_{78} \leftarrow 30) = Y_C^* - Y_C$$

 $(A_{78}^* \leftarrow 5) - (A_{78} \leftarrow 5) = Y_B^* - Y_B$







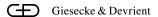
DFA on SHA1COMPR (2)

Use SHACAL equation with

$$\begin{array}{rcl} x & = & BCD_{79} = B_{79} \oplus C_{79} \oplus D_{79} \\ \delta & = & B_{79}^* \oplus B_{79} = ((Y_C^* - C_0) \hookleftarrow 2) \oplus ((Y_C - C_0) \hookleftarrow 2) \\ \Delta & = & (Y_A^* - Y_A) - (((Y_B^* - B_0) \hookleftarrow 5) - ((Y_B - B_0) \hookleftarrow 5)), \end{array}$$

to drop all pairs (B_0, C_0) for which the equation has no solution and compute $x = BCD_{79}$

- Notice that C₀ will be completely determined in most cases
 But: Almost no impact on the number of candidates of B₀
- Insert faults in A₇₇
- Use SHA1 equation to determine candidates for D_0
- Use SHACAL equation with $x = BCD_{78}$ to reduce the candidates of D_0



DFA on SHA1COMPR (3)

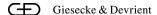
- At the end of elimination phase we know: C_0 , D_0 , BCD_{79} und BCD_{78}
- Calculate E_0 and E_{79} (independent of B_0):

$$E_{0} = Y_{E} - E_{80} = Y_{E} - D_{79} = Y_{E} - (BCD_{79} \oplus (((Y_{C} - C_{0}) \leftrightarrow 2) \oplus (Y_{D} - D_{0})))$$

$$E_{79} = BCD_{78} \oplus B_{78} \oplus C_{78} = BCD_{78} \oplus ((Y_{D} - D_{0}) \leftrightarrow 2) \oplus (Y_{E} - E_{0})$$

Adapt attack of SHACAL1 to start in round 79 instead of round 80

with
$$E_{79}^* = E_{79} + Y_A^* - Y_A + ((Y_B - B_0) \leftrightarrow 5) - ((Y_B^* - B_0) \leftrightarrow 5) + (((Y_C - C_0) \leftrightarrow 2) \oplus (Y_D - D_0) \oplus (Y_E - E_0)) - (((Y_C^* - C_0) \leftrightarrow 2) \oplus (Y_D^* - D_0) \oplus (Y_E^* - E_0))$$



Computational optimization (Impact of B_0)

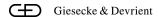
- B₀ influences
 - \blacksquare A_{79} and A_{79}^* , but not $A_{79} A_{79}^*$
 - K_{78} , but $K_{78} + B_0 = const$ for all B_0
- Idea: If the 5 upmost bits of B₀ are known,
 - choose $\hat{X} \in \{ \min \text{ of all } B_0's, \max \text{ of all } B_0's \}$ and
 - discard all errors Y_B^* equal to one of the remaining candidates of B_0 , then

$$((Y_B - B_0) \leftarrow 5) - ((Y_B^* - B_0) \leftarrow 5) = ((Y_B - \hat{X}) \leftarrow 5) - ((Y_B^* - \hat{X}) \leftarrow 5)$$

- $\Rightarrow E_{79}^*$ does not "really" depent on B_0
- \Rightarrow Only two values of B_0 have to be tested

Fault model

- Used a 32 bit faultmodel
- Also 16bit (and 8bit) fault model simulated
 - Needed less errors to determine B_0 , C_0 and D_0 with the SHA1 equation
 - Possibility to attack the final addition directly
 - But up to a factor of 2(4) more errors for the SHACAL equation
 - Costs less computation time (not critical)

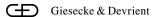


FDTC 2011: Differential Fault Analysis on the SHA1 Compression Function

Simuation results (32 bit faultmodel)

Nr.	of faults	5	remaining candidates (avg)					Nr. of faults	success	computation	Nr. of si-
(elimination-phase)			B ₀	C ₀	D ₀	E ₀	E ₇₉	(SHACAL1-phase)	rate	time (avg)	mulations
3 · 1622	-	4866	162406	1.8	1.7	7.7	22.3	9 · 15 = 135	93.8%	3.9 min	500
3 - 1288	-	3864	215834	1.6	1.9	6.8	25.4	9 · 15 = 135	93.0%	6.6 min	500
3 · 955	-	2865	291700	1.7	1.6	6.2	16.0	9 · 15 = 135	89.2%	7.5 min	500
3 · 622	-	1866	450078	1.8	1.7	6.3	18.0	9 · 15 = 135	88.0%	25 min	500
3 · 455	-	1365	565252	1.6	1.7	6.1	19.4	9 · 15 = 135	76.5%	82 min	153
3 · 289	-	867	954745	1.6	1.5	7.7	22.4	9 · 15 = 135	73.7%	171 min	114

- Impact of number of faults only to remaining candidates of B₀, the success rate and the computation time
- Memory overflows (to many candidates of B₀) or timeout restrictions lowered success rate
- Change program to dynamic fault injection to get results independent of the success rate



Conclusion and ongoing work

- With about 1000 faults it is possible to fully extract the secret inputs of the SHA1 compression function with high probability
- Work on SHA224/256 similar to the work done by Wei Yue-chuan et al. on SHACAL-2

(Wei Yue-chuan, Li Lin, Li Rui-lin and Li Chao, Differential Fault Analysis on SHACAL-2, Journal of Electronics and Information Technology, 2010)

The End

■ Thank you for your attention

