On Protecting Cryptographic Applications Against Fault Attacks Using **Residue Codes**

Kazim Yumbul

Gebze Institute of Technology Gebze, Kocaeli, 41400 Turkey Email: kyumbul@gyte.edu.tr

Serdar Süer Erdem

Gebze Institute of Technology Gebze, Kocaeli, 41400 Turkey Email: ser dem@gyte.edu.tr

*Erkay Savaş

Sabanci University Tuzla Istanbul, 34956 Turkey Email: erkays@sabanciuniv.edu

OUTLINE

- Introduction
- Summary of Contribution
- Non-linear Residue Codes for Error Detection
- Adversarial Model
- Attacks on Residue Codes
- Error Detection Strategy
- Architecture
- Implementation Results
- Conclusion and Future Work

INTRODUCTION

- Adversary having physical access to cryptographic device can introduce errors during the calculations
- Faulty calculations → compromise of secret keys
- <u>Remedy</u>: Equip the device with *error detection* capability
- Conventional error-detection codes may not be sufficient against sophisticated attackers
- Karpovsky and Taubin proposed non-linear codes FDTC 2011, 27 September, Nara Japan

CONTRIBUTION

- Our solution also based on non-linear codes
 - Specifically quadratic residue codes

• Our contribution:

- Investigation of the security of quadratic residue codes against a new type of adversarial model
- Proposal of a new residue codes using two moduli
- Integration of the quadratic residue codes into the datapath of an embedded processor
- Investigation of the overhead cost of the integration (chip space, time complexity)

Residue Codes for Error Detection

Non-linear residue codes

 $C = \{(x, w) \mid x \in Z_{2^k}, w = f(x) \mod p \in F_p\}$

Quadratic residue codes

$$C = \{(x, w) \mid x \in Z_{2^k}, w = x^2 \bmod p \in F_p\}$$

Dual residue codes

 $C = \{(x, w) \mid x \in Z_{2^k}, w = f_p(x) \mod p \parallel f_q(x) \mod q \}$

 $w = w_p / / w_q$, $w_p = f_p(x) \mod p$ and $w_q = f_q(x) \mod q$

Undetected Errors

- Let e_x and e_w denote errors in the data x and parity w, respectively
- Undetected errors

 $f(x + e_x \mod 2^k) \mod p = w + e_w \mod 2^r\}$

 The probability that this error remains undetected (error masking probability)

$$Q(e) = Q(e_x, e_w) = \frac{\left| \left\{ x \mid (x + e_x, w + e_w) \in C \right\} \right|}{|C|}$$

Adversarial Model

- Assumptions on the (*powerful*) adversary
 - cannot read the bits in the data path; i.e. x and w are unknown.
 - can flip bits of the data x and the parity w to generate undetectable errors
- Example: simple residue code
 - $w = x \mod p$, where $p = 2^r 1$ and r < k
 - A data word $x = (x_{k-1}, ..., x_r, x_{r-1}, ..., x_1, x_0)$
 - Attack: $x_m = (x_{k-1}, \dots, x_r', x_{r-1}, \dots, x_1, x_0')$
 - If $x = (x_{k-1}, ..., 0, x_{r-1}, ..., x_1, 1) \rightarrow x_m = x + p \rightarrow w = x_m \mod p$

Attacking Quadratic Residue Codes

- Security depends on the choice of the modulus
- Example:
 - $p = 2^{32}-5$ (suitable for protecting computer words)

 - Data words of the form $x = (x_{31}, ..., x_4, x_3, 0, x_1, x_0)$
 - Attack: $x_m = (x_{31}, \dots, x_4, x_3, 0, x_1, x_0)$
 - $x_m = p x \rightarrow w = x^2 \mod p = (p x)^2 \mod p$
 - Success probability: 50%
- A better modulus may result in poor implementation
 - p = 0xFB01CDD9

Dual Residue Codes

- Basic idea is to use two moduli, p and q
 Parity
 - $w = f_p(x) \mod p \parallel w_q = f_q(x) \mod q$
- Attacking Example:
 - $w_p = x \mod 2^{19} 1$ and $w_q = x^2 \mod 2^{13} 1$
 - $x = (x_{31}, \dots, 0, x_{12}, \dots, x_1, 1) \rightarrow x_m = x + q \rightarrow w_q = x_m \mod q$
 - $w_p \neq x_m \mod p = x \mod p + 2^{13} \cdot 1 \mod p$
 - If $w_p = (w_{p,18}, \dots, 0, w_{p,12}, \dots, w_{p,1}, 1)$
 - Success rate is 1/16 if we are able to flip the bits x_{13} , x_0 , $w_{p,13}$, and $w_{p,0}$.

Quadratic Dual Residue Codes

Definition

- $w_p = x^2 \mod p$ and $w_q = x^2 \mod q$.
- Due to Chinese Remainder Theorem
 - there are four data words x₁, x₂, x₃, x₄ that have the same parity

•
$$s_p = x \mod p$$
 and $s_q = x \mod q$

- $x_1 \equiv (s_p \cdot N_p \cdot M_p + s_q \cdot N_q \cdot M_q) \mod n$
- $x_2 \equiv (-s_p \cdot N_p \cdot M_p + s_q \cdot N_q \cdot M_q) \mod n$
- $x_3 \equiv (s_p \cdot N_p \cdot M_p s_q \cdot N_q \cdot M_q) \mod n$
- $x_4 \equiv (-s_p \cdot N_p \cdot M_p s_q \cdot N_q \cdot M_q) \mod n$

Quadratic Dual Residue Codes

Attack scenarios

- $x_1 \equiv -x_4 \mod n$
 - $p = 2^{19} 1$ and $q = 2^{13} 1$
- $x_1 \equiv x_2 \mod q$
- $x_1 \equiv -x_2 \mod p$
- Adding a multiple of *n* to *x*.
- Since $n < 2^{32}-1$ it is possible, however difficult and unlikely
- Choose $k = 31 \rightarrow$ some performance implications

FDTC 2011, 27 September, Nara Japan

Robust Functional Unit

- Input parities are known
 - Since they are output of other robust functional unit

FDTC 2011, 27 September, Nara Japan

Robust Adder

Predicted parity

Robust Multiplier

Predicted parity

- $w_c^* = \left| \left| a^2 \right|_p \cdot \left| b^2 \right|_p \right|_n$
 - $= \left| w_a \cdot w_b \right|_p$

 $w_{c} = w_{c}^{*}$.

Calculated parity

 $w_{c} = \left| \left(c_{H} \cdot 2^{k} + c_{L} \right)^{2} \right|_{p}$ = $\left| c_{H}^{2} \cdot 2^{2k} + c_{H} \cdot c_{L} \cdot 2^{k+1} + c_{L}^{2} \right|_{p}$ = $\left| \left| c_{H}^{2} \right|_{p} \cdot \left| 2^{2k} \right|_{p} + \left| c_{H} \right|_{p} \cdot \left| c_{L} \right|_{p} \cdot \left| 2^{k+1} \right|_{p} + \left| c_{L}^{2} \right|_{p} \right|_{p}$ Check

Integration

 Pipeline Integration of the Proposed Robust Functional Units

Data Hazards

- Occasional pipeline stalls
 - Due to data dependencies and long lasting robust operations
 - Reordering can eliminate most.

Processor Configurations

Configuration 0:

- 32-bit Xtensa LX3 microprocessor
- A simple embedded processor without robust units
- Configuration 1:
 - $p = 2^{32} 5$ ($w_p = x^2 \mod p$) and k = 32
 - Unsafe against the proposed adversary model
- Configuration 2:
 - $p = 2^{31} 1$ ($w_p = x^2 \mod p$) and k = 31
 - Unsafe against the proposed adversary model
 - Easier to implement in hardware

Processor Configurations

Configuration 3

•
$$w_p = x^2 \mod p$$
, $w_q = x \mod q$

•
$$p = 2^{19} - 1$$
 and $q = 2^{13} - 1$ ($k = 32$)

Unsafe against the proposed adversary model

Configuration 4

•
$$w_p = x^2 \mod p$$
, $w_q = x \mod q$

•
$$p = 2^{19} - 1$$
 and $q = 2^{13} - 1$ ($k = 31$)

Unsafe against the proposed adversary model

FDTC 2011, 27 September, Nara Japan

Processor Configurations

Configuration 5

- $w_p = x^2 \mod p$, $w_q = x^2 \mod q$
- $p = 2^{19} 1$ and $q = 2^{13} 1$ (k = 32)
- Good protection against the proposed adversary model

Configuration 6

- $w_p = x^2 \mod p$, $w_q = x^2 \mod q$
- $p = 2^{19} 1$ and $q = 2^{13} 1$ (k = 31)
- Good protection against the proposed adversary model

Implementation Results

Table I CLOCK CYCLE COMPARISON FOR MONTGOMERY IMPLEMENTATION

Lower clock count
due to optimized
functional units

	Configurations	2048-bit	1024-bit	512-bit
١I	Configuration 0	304,585	88,588	29,859
• [Configuration 1	129,802	36,186	12,394
	Configuration 2	208,571	57,936	18,126
	Configuration 3	190,791	51,845	16,592
	Configuration 4	208,564	57,894	18,119
	Configuration 5	190,791	51,845	16,592
	Configuration 6	208,564	57,894	18,119

~ 50% increase in ASIC area

Table II

Speed and Area Information for ASIC Implementation

Configurations	CPU Speed (MHz)	Base CPU Area	TIE Area	Total Area
Configuration 0	320	64,000	0	64,000
Configuration 1	320	64,000	33,076	97,076
Configuration 2	320	64,000	32,985	96,985
Configuration 3	320	64,000	32,300	96,300
Configuration 4	320	64,000	32,289	96,289
Configuration 5	320	64,000	34,918	98, 918
Configuration 6	320	64,000	34,912	98, 912

Negligible decrease in Less than 50% increase clock frequency Implementation Results more DSP units Table III Speed and Gate Information for FPGA Implementation with Time Constraint @ 33.33 MHz Configurations Max Clock Frequency (MHz) Slice Count LUT Count RAM16b DSP48s Configuration 0 37.2817.75119.9582721 Configuration 1 33.338 9.26326.7612721 Configuration 2 34.338 9.39526,7012720 2722 Configuration 3 36.0048.917 26.082Configuration 4 36.0048,915 26.0802722 Configuration 5 26.20227233.9408.235 $4\mathbf{V}$ Configuration 6 33.9408.234 26.1982724

> Table IV Speed and Gate Information for FPGA Implementation with no Time Constraint

Configurations	Max Clock Frequency (MHz)	Slice Count	LUT Count	RAM16b	DSP48s
Configuration 0	57.621	7,751	19,958	272	1
Configuration 1	34.338	9,263	26,761	272	1
Configuration 2	40.538	9,395	26,701	272	0
Configuration 3	45.460	8,917	26,082	272	2
Configuration 4	45.460	8,915	26,080	272	2
Configuration 5	39.001	8,235	26,202	272	4
Configuration 6	39.001	8,234	26,198	272	4

Some decrease in clock frequency

Conclusion and Future Work

- Certain residue codes are shown to be insecure in the adopted adversarial model
- A new class of error detection codes is proposed
- Robust functional units utilizing residue codes are designed and implemented in an embedded processor
- Implementation results of the new processor core for both ASIC and FPGA are reported

Conclusion and Future Work

- The results show that it is possible to incorporate powerful error detection circuitry even into an embedded processor core if low to moderate increases in area and time are tolerable.
- The adopted error detection strategy benefits many cryptographic applications that uses basic arithmetic operations.
- Need for more analysis of the residue codes
 - We already obtained new results

THANK YOU