

Differential Fault Analysis on Lightweight Blockciphers with Statistical Cryptanalysis Techniques

Dawu Gu, Juanru Li, Sheng Li, Zheng Guo, Junrong Liu

Shanghai Jiao Tong University

FDTC 2012, 9 September 2012

Outlines

- Fault Analysis Review and General Principple
- PRESENT and PRINTcipher Specification
- Attack Setup and Details
- Simulation Result
- Conclusion

Fault Analysis

- Fault Analysis was proposed and developed by
 - D. Boneh, R. DeMillo, and R. Lipton, "On the importance of checking cryptographic protocols for faults"
 - E. Biham and A. Shamir, "Differential fault analysis of secret key cryptosystems," CRYPTO'97.
 - et al
- Using some pairs of correct and faulty ciphertexts to recover the secret key

よ海交通大学 General DFA Principles

- Guess and determine
- An equation or equations involve correct and faulty ciphertexts and partial round keys

$$f(C, C^*, rk) = Consts$$

- right key guess always passes the test
- Wrong key guesses fail with great probability
 - Correctness

よ海交通大学 General DFA Principles

- Combining divide and conquer
- Each equation involves partial round keys within exhaustive search

$$f(C, C^*, rk) = Consts$$

Efficiency

New Challenges

Countermeasures

- More robust hardware to make the injection harder
- Compute the last few rounds twice and check the integrity

Research goal

- Less fault injections
- Earlier injection rounds
- More practical fault model

diffusion

There doesn't exist clear equations with required properties

More sufficient

Our Attack Principles

Solutions

- Adjust considering the vaule of f (C, C*, rk)
 to the distribution of f (C, C*, rk)
- Distribution is a statistical concepts
 - More faults needed
- Methods to evaluate the similarity of distribution

PRESENT

a 31-round SPN block cipher with 64 bits block size and supports 80/128 bits key. (CHES 2007)

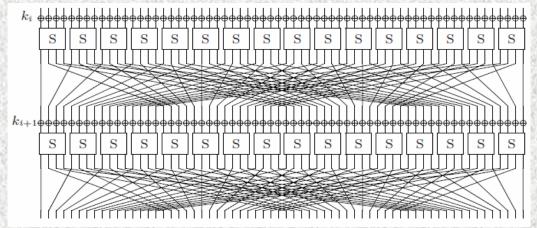
Algorithm 1: PRESENT

Input: $u_1, K_1 - K_{32}$

Output: u_{32}

for i = 1 to 31 do

addRoundKey (u_i, K_i)

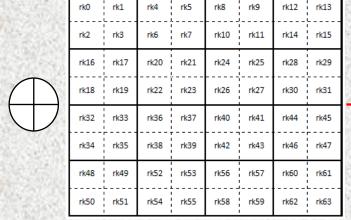

 $sBoxlayer(u_i)$

permutationLayer(u_i)

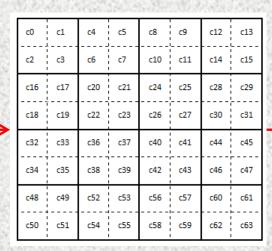
end

 $addRoundKey(u_{32}, K_{32})$

return u_{32}



PRESENT


a0	a1	a4	a5	a8	a9	a12	a13
a2	a3	a6	a7	a10	a11	a14	a15
a16	a17	a20	a21	a24	a25	a28	a29
a18	a19	a22	a23	a26	a27	a30	a31
a32	a33	a36	a37	a40	a41	a44	a45
a34	a35	a38	a39	a42	a43	a46	a47
a48	a49	a52	a53	a56	a57	a60	a61
a50	a51	a54	a55	a58	a59	a62	a63

т.								
	b0	b1	b4	b5	b8	b9	b12	b13
	b2	b3	b6	b7	b10	b11	b14	b15
	b16	b17	b20	b21	b24	b25	b28	b29
	b18	b19	b22	b23	b26	b27	b30	b31
	b32	b33	b36	b37	b40	b41	b44	b45
	b34	b35	b38	b39	b42	b43	b46	b47
	b48	b49	b52	b53	b56	b57	b60	b61
	b50	b51	b54	b55	b58	b59	b62	b63

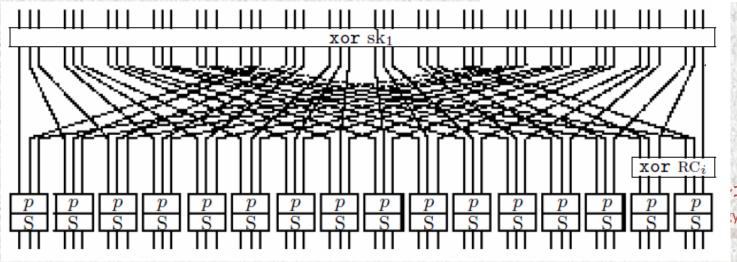
Add RoundKey

S-box

Bit-Permutation

c0	c4	c16	c20	c32	c36	c48	c52
c8	c12	c24	c28	c40	c44	c56	c60
c1	c5	c17	c21	c33	c37	c49	c53
c 9	c13	c25	c29	c41	c45	c57	c61
c2	c6	c18	c22	c34	c38	c50	c54
c10	c14	c26	c30	c42	c46	c58	c62
c3	с7	c19	c23	c35	c39	c51	c55
c11	c15	c27	c31	c43	c47	c59	c63

Lab of Cryptology and Computer Security


PRINTcipher

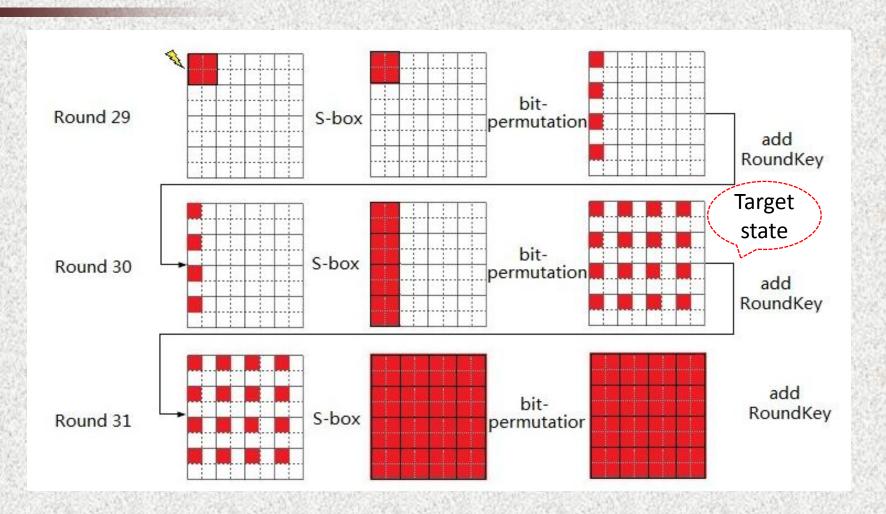
a 48/96-round SPN block cipher with 48/96 bits block size and supports 80/160 bits key. (CHES 2010)

Algorithm 2: PRINTCIPHER

```
Input: u_1, K_1 - Kr
Output: u_r
for i = 1 to r do

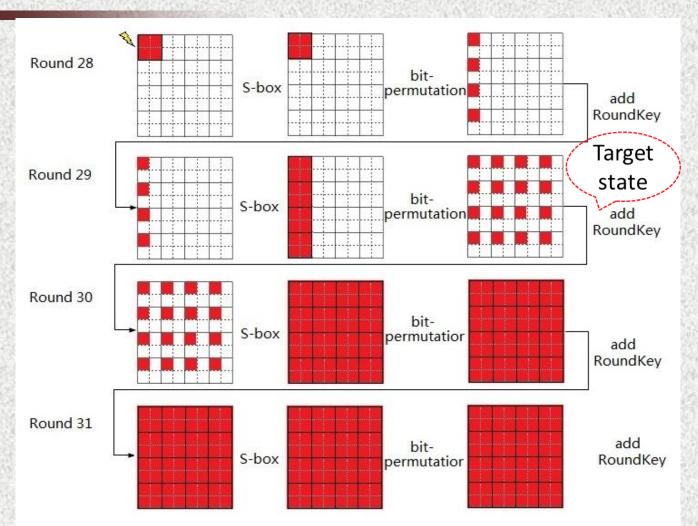
| addRoundKey(u_i, K_i) | linearDiffusion(u_i) | xorRoundCounter(u_i) | keyedPermutation(u_i) | sBoxlayer(u_i) end
return u_r
```


算机安全实验室 y and Computer Security

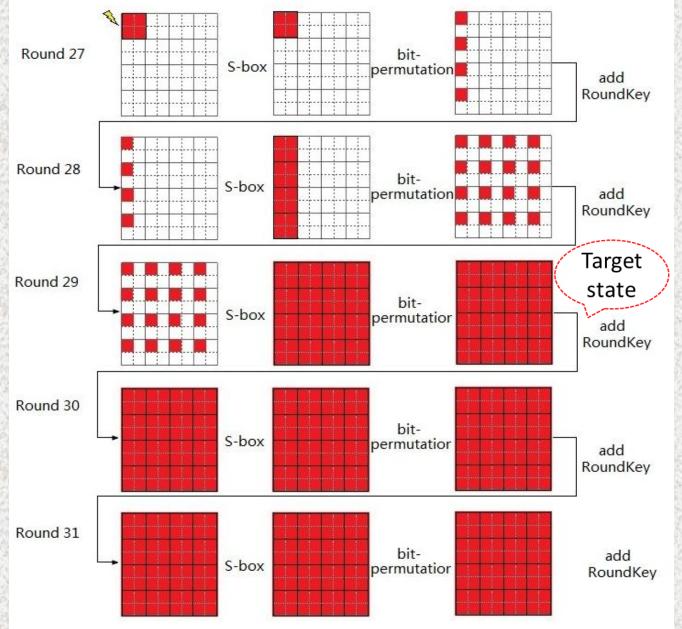


Previous Results

		PRESENT-	80/PRESENT-128	
	Round	Numbers	Complex	Fault model
J. Li et al	r-1 th	40-50/-	2 ¹⁶ /-	1 nibble fault on encryption
G. Wang et al	30 th and 31 st round key	64/-	2 ²⁹ /-	1 nibble fault on key schedule
X. Zhao et al	r-2 th	8/16	2 ^{14.7} /2 ^{21.1}	1 nibble fault on encryption
		PRINTcipher	-48/PRINTcipher	-96
	Round	Numbers	Complex	Fault model
X. Zhao et al	r-2 th	12/24	2 ^{13.7} /2 ^{22.8}	1 nibble fault on encryption
X. Zhao et al	r-3 th	-/8	-/2 ^{18.7}	1 nibble fault on encryption 与计算机安全实

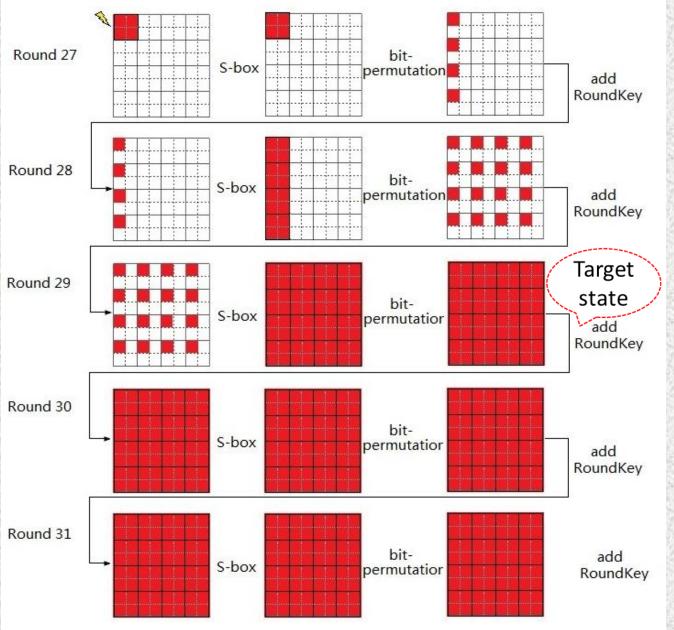


上海交通大学 Previous Fault Analysis


Earlier Round Fault Injection

Earlier
Earlier Round
Fault
Injection

No exact relation in target state



密码与计算机安全实验室

Lab of Cryptology and Computer Security

In target state
each bit has
probability to be
affected, but the
probability is
different.

密码与计算机安全实验室

Lab of Cryptology and Computer Security

Single Random S-box Fault Model

- Only one S-box corrupted
- The faulty S-box and faulty value is unknown and uniformly distributed
- For ciphers considered 4-bit/3-bit fault

Multi S-boxes Fault Model

- Multiple S-boxes corrupted
- The faulty S-boxes and faulty values are unknown and uniformly distributed

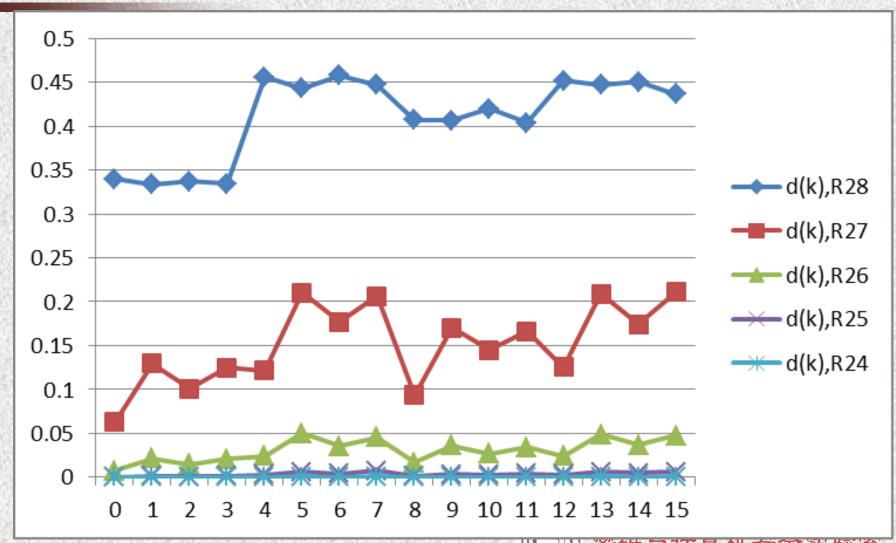
- Collect correct and faulty ciphertext pairs
- For each group of key guess partial decrypt the ciphertext pairs to get the differences at target state
- Use distinguisher to eliminate the wrong keys till only one candidate left or the practical level
- Use key schedule to recover the master key

Build fault-based distinguisher

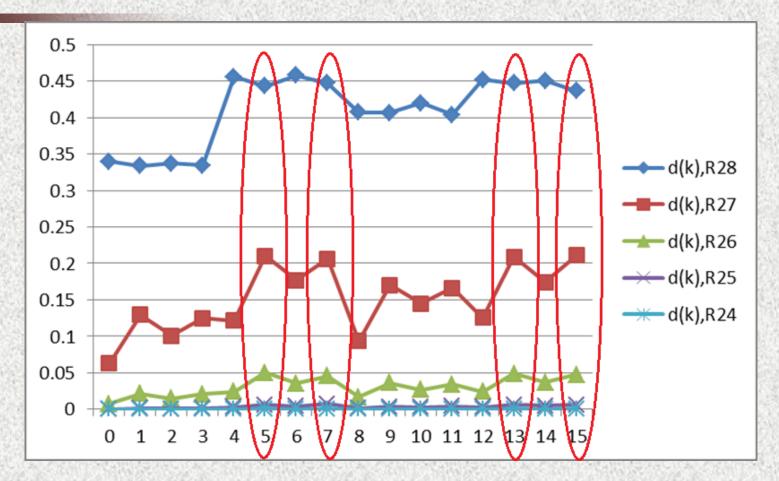
$$d(F(C, C^*, rk))$$
 is maximal or mimimal

- Due to the slow diffusion of bit-permutation and Wrong Key Randomization Hypothesis
- the difference distribution is non-uniform even on a subset of the penultimate or antepenultimate internal state
 - We focus on the difference for each S-box bits just before penultimate round

Squared Euclidean Imbalance (SEI) distinguisher


- Exact knowledge about the fault propagation and theoretical calculation of the distribution is hard
- Don't require exact distribution and simplicity consideration

$$d(k) = \sum_{\delta=0}^{2^{m}-1} \left(\frac{\#\{n; g_i(C_n, C^*, rk) = \delta\}}{N} - \frac{1}{2^m} \right)^2$$



- Test 10 000 pairs of random ciphertext pairs and calculate their SEI as threshold
 - about 0.0001-0.0005
- Do fault injection simulation and calculate d(k) using SEI on each nibble before penultimate round
- Complete key recover simulation

*Different fault model leads to different distribution

- Key recover simulation result
 - The correct key gives a significant high SEI value (about 0.006)
 - the average SEI is about 0.0001-0.0003 for wrong keys
 - The most significant is only about 0.0006 for wrong keys
- guess four group of each 16+4 sub-key bits
- The attack complexity is about $4 \cdot 2^{16+4} \cdot 10000 \cdot 2 = 2^{36.3}$ partial decryption.

	Fault injection before Round 25-28							
nibble(i)	0	1	2	3	4	5	6	7
$d(k), R_{28}$	0.1686	0.1542	0.1650	0.1538	0.2563	0.2434	0.2532	0.2409
$d(k), R_{27}$	0.0145	0.0333	0.0238	0.0334	0.0350	0.0743	0.0548	0.0691
$d(k), R_{26}$	0.0007	0.0024	0.0014	0.0024	0.0040	0.0105	0.0066	0.0103
$d(k), R_{25}$	0.0001	0.0002	0.0001	0.0002	0.0002	0.0010	0.0005	0.0008
nibble(i)	8	9	10	11	12	13	14	15
$d(k), R_{28}$	0.2224	0.1996	0.2171	0.2105	0.2553	0.2374	0.2433	0.2425
$d(k), R_{27}$	0.0232	0.0519	0.0407	0.0544	0.0371	0.0728	0.0549	0.0732
$d(k), R_{26}$	0.0023	0.0064	0.0031	0.0064	0.0042	0.0096	0.0054	0.0104
$d(k), R_{25}$	0.0003	0.0005	0.0004	0.0004	0.0003	0.0009	0.0005	0.0007

 $\label{eq:table_II} \mbox{Table II} \\ d(k) \mbox{ for PRESENT distinguisher: 2 s-boxes fault model}$

d(

Simulation Result

	Fault injection before Round 25-28											
nibble	le(i) 0 1 2 3 4 5 6 7											
d(k)												
d(k)		Fault injection before Round 26-28										
d(k)	nit	oble(i)	0	1	2	3	4	5	6	7		
d(k)	d(k	$(2), R_{28}$	0.0879	0.0822	0.0806	0.0841	0.1480	0.1385	0.1416	0.1458		
nibł	d(k	(R_{27})	0.0042	0.0121	0.0077	0.0110	0.0147	0.0316	0.0239	0.0315		
$\frac{d(k)}{d(k)}$	d(k	$(2), R_{26}$	0.0001	0.0003	0.0002	0.0003	0.0008	0.0033	0.0015	0.0033		
$\frac{d(k)}{d(k)}$	nil	oble(i)	8	9	10	11	12	13	14	15		
$\frac{d(\kappa)}{d(k)}$	d(k	$(1), R_{28}$	0.1202	0.1146	0.1154	0.1179	0.1507	0.1411	0.1388	0.1415		
<i>a(n)</i>	d(k)	$(1), R_{27}$	0.0092	0.0246	0.0138	0.0216	0.0149	0.0329	0.0226	0.0318		
	d(k	$(2), R_{26}$	0.0007	0.0014	0.0006	0.0015	0.0008	0.0028	0.0016	0.0031		

Table III d(k) for PRESENT distinguisher: 3 s-boxes fault model

		F	ault inje										
nibble	e(i)	0	1	2	3	4	5	6	7				
d(k)													
d(k)				Fault	injection	n before	Round	26-28			\$26		
d(k)	nit	oble(i)	0	1	2	. 3	4	1 5	6	7	193		
d(k)	d(k	$(r), R_2$				1	1			l	0000	least a teather	
nibł	d(k	$(r), R_2$		Fault injection before Round 26-28									
d(k)	d(k)	$(2), R_2$	nibbl	e(i)	0	1	2	3	4	5	6	7	
$\frac{d(k)}{d(k)}$	nil	oble(i	d(k),	R_{28}	0.0506	0.0449	0.0444	0.0431	0.0958	0.0873	0.0857	0.0868	
$\frac{d(k)}{d(k)}$	d(k	$(r), R_2$	d(k),	R_{27}	0.0016	0.0049	0.0029	0.0045	0.0066	0.0172	0.0118	0.0159	
d(k)	d(k)	$(r), R_2$	d(k),	R_{26}	0.0001	0.0003	0.0002	0.0003	0.0003	0.0011	0.0007	0.0011	
	d(k	$(r), R_{2}$	nibbl	e(i)	8	9	10	11	12	13	14	15	
d(d(k),	R_{28}	0.0749	0.0696	0.0698	0.0684	0.0959	0.0839	0.0842	0.0885	
estatuse.			d(k),	R_{27}	0.0040	0.0105	0.0070	0.0107	0.0062	0.0160	0.0107	0.0172	
	d	l(k) F	d(k),	R_{26}	0.0002	0.0006	0.0004	0.0007	0.0002	0.0013	0.0006	0.0014	

Table IV $d(k) \ {\it for \ PRESENT \ distinguisher: 4 \ s-boxes \ fault \ model}$

PRESENT Multi S-boxes Fault Attack

Fault S-boxes Number	Valid Attack
1 th	5 fault propagation + 2 partial decryption
2	4 fault propagation + 2 partial decryption
3 #	3 fault propagation + 2 partial decryption
4	2 fault propagation + 2 partial decryption

- Attack against PRINTcipher-48
 - almost the same as the process against PRESENT
- Differences
 - PRINTcipher uses the key-dependent permutation
- Not make attack more complex
 - the distribution keeps biased on each S-box even with 4 different secret permutation

	Fault injection before Round 39-43							
nibble(i)	0	1	2	3	4	5	6	7
$d(k), R_{43}$	0.2767	0.2819	0.2830	0.2746	0.2777	0.2706	0.2772	0.2759
$d(k), R_{42}$	0.1049	0.1083	0.1086	0.0966	0.0944	0.1035	0.1041	0.1013
$d(k), R_{41}$	0.0273	0.0314	0.0286	0.0253	0.0265	0.0256	0.0277	0.0237
$d(k), R_{40}$	0.0072	0.0049	0.0051	0.0061	0.0053	0.0052	0.0053	0.0041
$d(k), R_{39}$	0.0008	0.0012	0.0011	0.0006	0.0007	0.0011	0.0008	0.0010
nibble(i)	8	9	10	11	12	13	14	15
$d(k), R_{43}$	0.2738	0.2658	0.2680	0.2835	0.2661	0.2734	0.2777	0.2723
$d(k), R_{42}$	0.0987	0.0957	0.1045	0.1091	0.0946	0.0985	0.1041	0.1027
$d(k), R_{41}$	0.0261	0.0257	0.0251	0.0267	0.0257	0.0247	0.0264	0.0268
$d(k), R_{40}$	0.0046	0.0058	0.0055	0.0051	0.0049	0.0051	0.0045	0.0060
$d(k), R_{39}$	0.0008	0.0009	0.0005	0.0008	0.0009	0.0010	0.0008	0.0009

 $\begin{array}{c} \text{Table V} \\ d(k) \text{ for PRINTCIPHER distinguisher: single s-box fault} \\ \text{MODEL} \end{array}$

	Fault injection before Round 39-43										
nibble	e(i) 0	1 2	2 3	4	5	6	7				
$\frac{d(k),}{d(k),}$		Fault injection before Round 43-40									
d(k),	nibble(i)	0	1	2	3	4	5	6	7		
d(k),	$d(k), R_{43}$	0.1094	0.0909	0.1014	0.1019	0.1005	0.0992	0.0984	0.1026		
d(k),	$d(k), R_{42}$	0.0261	0.0279	0.0246	0.0233	0.0221	0.0220	0.0221	0.0217		
nibb	$d(k), R_{41}$	0.0045	0.0031	0.0040	0.0030	0.0028	0.0028	0.0034	0.0033		
d(k),	$d(k), R_{40}$	0.0003	0.0007	0.0003	0.0004	0.0009	0.0004	0.0004	0.0004		
$\frac{d(k),}{d(k),}$	nibble(i)	8	9	10	11	12	13	14	15		
d(k),	$d(k), R_{43}$	0.0990	0.1030	0.1044	0.1093	0.1022	0.1034	0.0942	0.0912		
d(k),	$d(k), R_{42}$	0.0194	0.0190	0.0208	0.0222	0.0227	0.0215	0.0225	0.0233		
())	$d(k), R_{41}$	0.0041	0.0030	0.0026	0.0039	0.0028	0.0032	0.0029	0.0024		
	$d(k), R_{40}$	0.0006	0.0005	0.0002	0.0004	0.0003	0.0005	0.0005	0.0004		
d(k)											

Table VI $d(k) \ {\rm FOR} \ {\rm PRINTCIPHER} \ {\rm Distinguisher:} \ 2 \ {\rm s-boxes} \ {\rm fault} \ {\rm model}$

	Fault injection before Round 39-43										
nibble	nibble(i) 0 1 2 3 4 5 6 7										
d(k),		Fault injection before Round 43-40									
d(k),	nibble(i)	0	1	1 2	3	4	5	6	7		
d(k)	$d(k), R_{43}$	0.1004	0.0000	0.101					4 0.102	100 H	
$\frac{d(k)}{d(k)}$	\ / /			F	Sault inie	ection b	efore Ro	ound 43.	-41		
d(k),	$d(k), R_{42}$	nibble	(i)	0	1	2	3	4	5	6	7
nibb	$d(k), R_{41}$		· /	U	1		3	4	3	U	1
d(k),	$d(k), R_{40}$	d(k), I		0.0443	0.0405	0.0422	0.0453	0.0426	0.0438	0.0405	0.0403
d(k),	nibble(i)	d(k), I	R_{42}	0.0064	0.0069	0.0068	0.0047	0.0049	0.0066	0.0060	0.0059
d(k),	$d(k), R_{43}$	d(k), I	R_{41}	0.0007	0.0005	0.0009	0.0009	0.0008	0.0010	0.0008	0.0007
$\frac{d(k),}{d(k),}$	$d(k), R_{42}$	nibble	e(i)	8	9	10	11	12	13	14	15
$\alpha(n),$	$d(k), R_{41}$	d(k), I	R ₄₃	0.0405	0.0383	0.0400	0.0429	0.0366	0.0402	0.0370	0.0334
	$d(k), R_{40}$	d(k), I	R_{42}	0.0066	0.0055	0.0052	0.0052	0.0066	0.0052	0.0059	0.0058
d(k		d(k), I	R_{41}	0.0008	0.0008	0.0006	0.0006	0.0007	0.0005	0.0005	0.0007

d(k) for I Table VII d(k) for PRINTCIPHER distinguisher: 3 s-boxes fault model

PRINTciphe	PRINTcipher-48 Multi S-boxes Fault Attack							
Fault S-boxes Number	Valid Attack							
1	7 fault propagation + 2 partial decryption							
2	6 fault propagation + 2 partial decryption							
3	5 fault propagation + 2 partial decryption							

The attack complexity is about $5 \cdot 2^{25} \cdot 2^{11} \cdot 2 = 2^{39}$ partial decryption

Conclusion

- Differential Fault Analysis with Statistical Cryptanalysis Techniques
- Used in the lightweight block cipher with bitpermutation
- Threaten the middle rounds of the ciphers
- Useful to Multi S-boxes Fault Model
- simulation source code at https://bitbucket.org/RomanGol/faultattack

Questions?

Thank You!

密码与计算机安全实验室

Lab of Cryptology and Computer Security