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INTRODUCTION

Introduction

B In order to design secure cryptosystems, one has to assess the risks of potential
attacks.

B We want to discuss about the practical implementation of attacks, more precisely
about the fault models.

B We want a DFA:
== General: can be used with all injection means.
== Adaptive: the efficiency increases when the fault model is more restrictive.
Simple to implement.
Without prior knowledge of the fault model...
Or with prior knowledge and higher efficiency.
Helped by some countermeasures!
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OUTLINE

Section 1 — Context
Section 2 — Entropy-based methodology

Section 3 — Improving entropy-based tools
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SECTION 1
CONTEXT




C22A CONTEXT DFA ON AES

AES-128
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K10

(round key 10)

Differential Fault Analysis

B Attacker corrupts one of the intermediate states of the
AES.

B Attacker performs a differential cryptanalysis between
the correct cipher (C) and the erroneous one (D) to
infer information about the secret key.
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CONTEXT: FAULT MODELS

B The fault model is the set of restrictions put on the injected faults.

B Common examples are:

= Single bit faults (2316 = 248 authorized faults on the State)

== Single byte faults ((4*28)4= 240 authorized faults on the State)
B Key extraction analyses are:

== Either restrictive (Giraud’s: 248, Piret’s: 240 ...)

== Either inefficient: a high number of fault injections is required (Moradi’s; 21279 ..))
B We represent a fault model with an error distribution. (2128)
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0.07

CONTEXT: FAULT INJECTIONS..
CLOCK GLITCHES S o
B Clock glitches create memorization faults in E
registers through setup time violations. £
W Faults are probabilistic. | Ul I‘ hinoulihinnh ol
B Distributions can be used for all injection means. Hmhy \I\qunnnu I Hmuulnm\\mluuumu |||H|||H|u\HnlwnluummuH\mmu||n\|||m||||mn||
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SECTION 2
ENTROPY-BASED METHODOLOGY




C2A ENTROPY: OUR ANALYSIS

B In order to work, our analysis needs the following hypotheses:
== | Ne faults are bit-flip.
== 1he faults are not uniformly distributed.”
== | he faults are injected on M9.

B from now on we shall concentrate on individual bytes...

B The correct key byte is noted K10.
B For each realization i:
== First a valid encryption is executed (C;).
== 1 hen a fault is injected on M9 and the faulty cipher value is memorized (D;).

i K10
M9 —(p
Round 9 Round 10
“ Awork based on a similar principle can be found in DFA on DES middle rounds CEA | 9 September 2012 | PAGE 9
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ENTROPY: RECONSTRUCTING THE FAULT MODEL

B From C; and D; (correct and faulty ciphers)
B Given a key guess s,
B The fault guess e; ; is computed with:

M9;s = SB™'(C; ® s)
eis =M9;s @SB~ (D; @ s)

c K10
M9 r\%
o |
Round 9 Round 10
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C2A ENTROPY

RK-table

B We can know construct the Realization/Key hypothesis (RK) table, filled with (e ).

eimax»o eimax»l

B This table has two interesting properties:
== Only one column (for s = K10) corresponds to faults actually injected.
== FOr every wrong key guess, the corresponding column is quasi-random.
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C2A ENTROPY: DECISION CRITERION

Finding the correct column

B The uniformity of a distribution is simply determined with Shannon entropy:

255

H(ps) = = ) ps(e) log, ps(e)
e=0

B Decision criterion:

= H(ps) —— 8 if s # K10

lmax—®

= H(pg10) —— Hin; <8

lmax

B Valid only for sets of faults of infinite size
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C2A ENTROPY: DECISION CRITERION

Finding the correct column with a finite number of
realizations

Comparison with pseudo-random sets.

imax: NUMber of realizations, u; ™" rand, the mean, a’”“"d the standard deviation.
H(p,) the measured entropy for the key guess s.

We can express the confidence cf that an entropy of value H is not random by:

Mrand
_ Plmax
Cfimax (H) - O.rand

lmax

B Decision criterion:
K10 =s& cfl-max(H(ps)) > X

B We chose with empirical calibration X = 6
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C22AQ ENTROPY: DECISION CRITERION EXAMPLE
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Entropy
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Data set size

1000
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ENTROPY: EFFICIENCY

B Using simulation, the entropy of the injection means may be linked with the attack

efficiency.
B Attack efficiency is the average minimum number of faults needed to meet the decision

criterion.

1000 }

Average number of
faults needed to find
the key
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Entropy of the injection means
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C2A ENTROPY: SUMMARY

B Our DFAIs:
== General: can be used with all injection means.
== Adaptive: the efficiency increases when the fault model is tighter.
== Simple to implement.
== Without prior knowledge of the fault model...
e —Opin oo oo e ananicher efficiepney
e —Holood by copnn conptornoacorpacl

B Itis not particularly efficient: can we improve it?

Average

best attack

Shannon entropy 6.41

Perfect single bit faults (simulation)
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SECTION 3
IMPROVING ENTROPY-BASED TOOLS




C2A IMPROVING TOOLS

Considering a known fault model

B We want to improve the efficiency of the attack by including information of a
known model.
B Lett(e) be the expected distribution, we use the relative entropy:

255

RH(ps,t) = Z ps(e) log, <p5(e)>
e=0

Average
best attack

Shannon entropy 6.41

Relative entropy 2.24
2.24

Perfect single bit faults (simulation)
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C2A IMPROVING TOOLS

How to learn the fault model t(e)

B Use the Shannon entropy in a first attack.

B Inject faults on M10 and observe the resulting fault model.

B We have previous knowledge of the system, the injection means, the
countermeasure...

B Bertoni’s countermeasure =1 parity bit

B Thus all odd bit faults are eliminated. This creates non uniformity!
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C2A IMPROVING TOOLS

Modeling basic countermeasures

B d(e) is the detection rate for error e.
B D= Y22 pk(e)d(e) is the global detection rate.

B Two cases:
== Virtual model with result discrimination: the attacker knows for which realizations
the countermeasure was activated. The new “virtual”’ distribution is:

B pK1o(e)(1 - d(e))
B 1-D

v(e)

== Virtual model without result discrimination: the attacker does not know for which
realizations the countermeasure was activated. The new “virtual” distribution is:
1

1
w(e) = ﬁD + pKlo(e)(l — d(e)) = ED + (1 —-D)v(e)
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C2AQ IMPROVING TOOLS: UNPROTECTED AES
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IMPROVING TOOLS: BERTONI'S COUNTERMEASURE
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C22 IMPROVING TOOLS : BERTONI’'S COUNTERMEASURE
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C2A CONCLUSION

Conclusion

B Our DFAIs:
== General: can be used with all injection means.
== Adaptive: the efficiency increases when the fault model is tighter.
== Simple to implement.
== \Without prior knowledge of the fault model...
== Or with prior knowledge and higher efficiency.
== Helped by some countermeasures!
B We loosened the constraints on the injection means.
We can find the key and the fault model in parallel.

B All faults contribute to find the key. The analysis is done by taking into account all faults as
a whole.

B Countermeasures must create non uniformity.
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C2A CONCLUSION

Perspectives
B Verify that all injection means have non uniform distribution for injected faults.
B Represent the fault model with something different than a distribution.
B Test this methodology on other algorithms. It should work if we can compute the injected

faults with the secret as a parameter.
B Cartography for localized injection means should include a fault entropy evaluation.
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