Combined Fault and Side-Channel Attacks on the AES Key Schedule

François DASSANCE Inside Secure

Alexandre VENELLI Inside Secure

FDTC 2012 09/09/2012

- Combined attack
- 2. Related work on combined attacks
 - Asymmetric cryptosystems
 - 2. Symmetric cryptosystems
 - 3. Roche et al.'s attack on AES
- 3. Combined attacks on AES key schedule
 - 1. Recursive structure of the key schedule
 - 2. RCON
 - 3. Affine transformation
- 4. Complexity of our attacks
- Countermeasures
- 6. Conclusion

Combined attack

Combines a fault attack with a leakage analysis

 Main goal: attack implementations resistant against fault and leakage analysis

 New implementations + new countermeasures often necessary

Example of combined attack

Algorithm 1 Binary SPA-FA resistant exponentiation

Input: $x \in \mathbb{G}$ and $d = (d_{k-1}, \ldots, d_0)_2 \in \mathbb{N}$

Output: x^d

- 1: $A \leftarrow x$
- $2: R[0] \leftarrow x$
- 3: $R[1] \leftarrow 1$
- 4: **for** i = 0 to k 1 **do**
- 5: $R[d_i] \leftarrow R[d_i].A$
- 6: $A \leftarrow A^2$
- 7: end for
- 8: $R[0] \leftarrow R[0].R[1]$
- 9: if $(R[0] \neq A)$ then
- 10: error
- 11: **end if**
- 12: return R[1]

Example of combined attack

Algorithm 1 Binary SPA-FA resistant exponentiation

Skip instruction

Input: $x \in \mathbb{G}$ and $d = (d_{k-1}, \ldots, d_0)_2 \in \mathbb{N}$

Output: x^d

1:
$$A \leftarrow x$$

$$2: R[0] \leftarrow x$$

3:
$$R[1] \leftarrow 1$$

4: **for**
$$i = 0$$
 to $k - 1$ **do**

5:
$$R[d_i] \leftarrow R[d_i].A$$

6:
$$A \leftarrow A^2$$

7: end for

8:
$$R[0] \leftarrow R[0].R[1]$$

9: if
$$(R[0] \neq A)$$
 then

10: error

11: **end if**

12: return R[1]

- 1. Combined attack
- 2. Related work on combined attacks
 - 1. Asymmetric cryptosystems
 - 2. Symmetric cryptosystems
 - 3. Roche et al.'s attack on AES
- 3. Combined attacks on AES key schedule
 - 1. Recursive structure of the key schedule
 - 2. RCON
 - 3. Affine transformation
- 4. Complexity of our attacks
- 5. Countermeasures
- 6. Conclusion

Asymmetric cryptosystems

- Fault Analysis + Simple Side-Channel Analysis
- Attack on atomic left-to-right exponentiation
 - Amiel, Villegas, Feix, Marcel 2007
- Resistant algorithms for RSA and ECC
 - Schmidt, Tunstall, Avanzi, Kizhvatov, Kasper, Oswald 2010
- Attack on scalar multiplication
 - Fan, Gierlichs, Vercauteren 2011

Symmetric cryptosystems

- Fault Analysis + Differential Side-Channel Analysis
- Differential Behavioral Analysis: attack on non-masked AES
 - Robisson, Manet 2007
- Attack on masked AES but not FA-protected. Reduce the DPA countermeasure of one order.
 - Clavier, Feix, Gagnerot, Rousselet 2010
- Attack on AES FA-protected and with masking of any order
 - Roche, Lomné, Khalfallah 2011

Roche et al. combined attack

- Principle:
 - Repeatable fault on the 16 bytes of key state of round 9
 - 2. Record the power consumption curve
 - Find a first-order correlation on the computation of the faulted ciphertext
- Main relation:

$$\widetilde{C_i^j} = SB\big(SB^{-1}\big(C_i^j \oplus k_{10}^j\big) \oplus e_9^j\big) \oplus k_{10}^j \oplus e_{10}^j$$

- Complexity to retrieve the whole key:
 - N faults and $2^{28}A$
 - -A = any DSCA statistical function on N curves

	Combined attack	High-order DSCA
Number of curves	Few and fixed	A lot and increasing with the order of masking
Complexity of key retrieval algorithm	2 ²⁸ A	$2^{12}A$

Remarks on Roche et al.

- Requires fault on the 16 bytes of the key
 - Not practical in all AES implementations
 - Not trivial with all fault injection techniques
- If a stuck-at fault model is considered, a masked bit induces a repeatability divided by 2
- High complexity of the key retrieval algorithm

- Combined attack
- 2. Related work on combined attacks
 - 1. Asymmetric cryptosystems
 - 2. Symmetric cryptosystems
 - 3. Roche et al.'s attack on AES
- 3. Combined attacks on AES key schedule
 - 1. Recursive structure of the key schedule
 - 2. RCON
 - 3. Affine transformation
- 4. Complexity of our attacks
- 5. Countermeasures
- 6. Conclusion

Combined attacks on AES key schedule

- Attacks based on two properties of the key schedule:
 - Recursive structure
 - Use of constant values
- Our propositions improve:
 - The number of faults
 - The complexity of the key retrieval algorithm

Recursive structure (1)

Round key K₉:

$$K_9^0 = K_8^0 \oplus RCON_9 \oplus SB(K_8^{13})$$

 $K_9^1 = K_8^1 \oplus SB(K_8^{14})$
 $K_9^2 = K_8^2 \oplus SB(K_8^{15})$
 $K_9^3 = K_8^3 \oplus SB(K_8^{12})$
 $K_9^j = K_8^j \oplus K_9^{j-4} \text{ for } 4 \le j \le 15$

- Relations between faults on K₉
- Ex: fault e_9^0 in $K_9^0 \rightarrow$ same fault on bytes 4, 8 and 12
- Relations between faults on K_{10}
- Ex: fault e_9^0 in $K_9^0 e_9^0 = e_{10}^0 = e_{10}^8$ and $e_{10}^4 = e_{10}^{12} = 0$

Recursive structure (2)

- Needs 4N faults
- Improvements on the key retrieval algorithm
- To retrieve K_{10}^0
 - Loop only on k_{10}^{0} and e_{9}^{0} as $e_{10}^{0} = e_{9}^{0}$
 - Complexity for this byte: $2^{16}A$
- Once e_9^0 is found $\rightarrow e_9^4$, e_9^8 and e_9^{12} are deduced
 - Simple loop on k_{10}^j for j = 4,8,12
 - Complexity for each of these 3 bytes: 2⁸A
- Same method for K_9^1 , K_9^2 and K_9^3
- Complexity for the whole key:

$$4 \times (2^{16} + 3 \times 2^{8})A$$

= $(2^{20} + 3 \times 2^{10})A$

RCON (1)

• First column of *K*₉

$$K_9^0 = K_8^0 \oplus RCON_9 \oplus SB(K_8^{13})$$

 $K_9^4 = K_8^4 \oplus K_9^0$
 $K_9^8 = K_8^8 \oplus K_9^4$
 $K_9^{12} = K_8^{12} \oplus K_9^8$

- One fault on $RCON_9$ affects 4 bytes of K_9 in the same way
- The fault can have a permanent effect
- Complexity similar to previous attack for 4 bytes: $(2^{16}+3\times 2^8)A$

RCON (2)

Attacking known constant values

- If the fault setup is characterized...
- $RCON_9 = 0x1B$
- Ex: if single bit $stuck-at\ 0$ or 1 model, only 4 possible values for $RCON_9$ (0x1A, 0x19,0x13,0x0B if $stuck-at\ 0$)
- Lower complexity for key retrieval algorithm (4 bytes):
 2¹⁰A
- Whether stuck-at or bit-flip model, a fault on a constant will be XOR-ed → No impact on the repeatability

Affine transformation (1)

Most DSCA countermeasures compute the SubBytes as

$$SB(X) = \Omega \cdot Inv_{F_{2^8}}(X) \oplus \Delta$$

where Ω is the matrix of the affine transformation and Δ is the vector.

 Different attack scenarios are possible depending on the implementation

Affine transformation (2)

- 1. Transient fault on Δ:
 - Same case as before
 - Complexity: 4N faults and $(2^{18} + 3 \times 2^{10})A$
- 2. Permanent fault. Different Δ_{SW} and Δ_{SB} for the SubWord and SubBytes
 - A fault e_{SW} on Δ_{SW} affects round 9 and 10
 - Faulted round 9 key is $\widetilde{K_9^j} = K_9^j \oplus e_{SW}$ for $0 \le j \le 15$
 - Relations between errors on K_{10}

$$e_{10}^{j+4} = e_{10}^{j+12} = e_{10}^{j} \oplus e_{SW}$$

 $e_{10}^{j+8} = e_{10}^{j} \text{ for } j = 0,1,2,3$

- Complexity: *N* faults and $(2^{24} + 3 \times 2^{16} + 3 \times 2^{10})A$

Affine transformation (3)

- 3. Permanent fault. Same Δ for SubWord and SubBytes
 - Same complexity as previous scenario
 - Data path modified \rightarrow relation of key retrieval becomes $SB(SB^{-1}(C_i^j \oplus k_{10}^j) \oplus e_9^j) \oplus e_9^j \oplus k_{10}^j \oplus e_{10}^j$
- If the fault setup is characterized, we can lower the complexity
 - 1. Transient fault: 4N faults and $2^{12}A$ (same complexity as classical DSCA)
 - 2. Permanent fault: N faults and $(2^{20} + 3 \times 2^{10})A$

- Combined attack
- 2. Related work on combined attacks
 - 1. Asymmetric cryptosystems
 - 2. Symmetric cryptosystems
 - 3. Roche et al.'s attack on AES
- 3. Combined attacks on AES key schedule
 - 1. Recursive structure of the key schedule
 - 2. RCON
 - 3. Affine transformation
- 4. Complexity of our attacks
- 5. Countermeasures
- 6. Conclusion

Complexity of our attacks

Attack	# faults	# A
Key state K_9 (Roche et al.) - Transient on 16 bytes	N	2^{28}
Key state K_9 (Roche et al.) - Transient on 1 byte	16 <i>N</i>	2^{20}
Key schedule - Transient 1 byte	4N	$2^{18} + 3 \times 2^{10}$
 RCON Transient known on 1 byte Transient random on 1 byte Permanent known on 1 byte Permanent random on 1 byte 	N N 1	$2^{10} 2^{16} + 3 \times 2^{8} 2^{10} 2^{16} + 3 \times 2^{8}$
Affine transformation - Transient known on 1 byte - Transient random on 1 byte - Permanent known on 1 byte - Permanent random on 1 byte	4N 4N N N	2^{12} $2^{18} + 3 \times 2^{10}$ $2^{20} + 3 \times 2^{10}$ $2^{24} + 3 \times 2^{16} + 3 \times 2^{10}$

- 1. Combined attack
- 2. Related work on combined attacks
 - 1. Asymmetric cryptosystems
 - 2. Symmetric cryptosystems
 - Roche et al.'s attack on AES
- 3. Combined attacks on AES key schedule
 - 1. Recursive structure of the key schedule
 - 2. RCON
 - 3. Affine transformation
- 4. Complexity of our attacks
- 5. Countermeasures
- 6. Conclusion

Countermeasures

- Masked coherence check:
 - 1. Store $C \oplus M_1$ and $C \oplus M_2$ two ciphertexts of the same message masked with M_1 and M_2
 - 2. Check $(C \oplus M_1) \oplus M_2 = (C \oplus M_2) \oplus M_1$
 - 3. If no fault, demask and output the ciphertext C
- Does not detect a permanent fault on $RCON_9$. Needs a known answer test or integrity check on $RCON_9$

- 1. Combined attack
- 2. Related work on combined attacks
 - 1. Asymmetric cryptosystems
 - 2. Symmetric cryptosystems
 - 3. Roche et al.'s attack on AES
- 3. Combined attacks on AES key schedule
 - 1. Recursive structure of the key schedule
 - 2. RCON
 - 3. Affine transformation
- 4. Complexity of our attacks
- 5. Countermeasures
- 6. Conclusion

Conclusion

- Combined attacks are a real threat to most current crypto implementations
- We propose different attack paths on AES that lower the complexity of previous combined attacks
- Repeatability of our attacks on AES constants do not depend on a stuck-at or bit-flip fault
- Needs additional countermeasure to protect against an attack on RCON₉

Thank you for your attention !

Contact: avenelli@insidefr.com

