On the Need of Randomness in Fault Attack Countermeasures – Application to AES

Victor LOMNE¹, Thomas ROCHE¹, Adrian THILLARD¹

¹ ANSSI (French Network and Information Security Agency)

FDTC 2012, Sunday, September 9th, 2012 Leuven, Belgium

Context of this work (1/2)

- Embedded Systems integrating Cryptography are susceptible to Physical Attacks, namely:
 - Side-Channel Attacks (SCA)
 - Fault Attacks (FA)
 - Combined Attacks (CA)

Context of this work (2/2)

- In this work we consider the security of Block Ciphers vs:
 - Side-Channel Attacks (SCA)
 - Fault Attacks (FA)
 - Combined Attacks (CA)

As example we will use the AES cipher

Outline

- Physical Attacks
 - Side-Channel Attacks
 - Fault Attacks
 - Combined Attacks
- 2 New Attacks on Classical Countermeasures
 - Combined Attack on Detection CM
 - Fault Attacks on Infection CM
 - On the Need of Randomness
- 3 Extended Countermeasures
 - Secure Detection
 - Secure Infection
 - Summary

Outline

- Physical Attacks
 - Side-Channel Attacks
 - Fault Attacks
 - Combined Attacks
- 2 New Attacks on Classical Countermeasures
 - Combined Attack on Detection CM
 - Fault Attacks on Infection CM
 - On the Need of Randomness
- 3 Extended Countermeasures
 - Secure Detection
 - Secure Infection
 - Summary

Side-Channel Attacks

- A CMOS device leaks information about its state during a computation through side-channels (power, electromagnetic radiations, time ...)
- SCA: exploits these physical leakages correlated with computed data to guess a secret
 - Simple SCA (SSCA): exploits 1 crypto. operation
 - Differential SCA (DSCA): exploits several crypto. operations
 very powerful due to its resistance to noise
 - Template Attacks (TA): profiling phase / matching phase
 ⇒ allow to capture the maximum of information

SCA Countermeasures

- Masking: only family of countermeasures with formal proofs
 - Principle: randomize input of the crypto. operation
 - Based on secret sharing
 - Input is shared in d shares \Rightarrow masking scheme of order d
- Attack on Masking: High-Order DSCA
 - A d^{th} order masking scheme can be defeated by a $(d+1)^{th}$ order DSCA
 - It consists in combining the handling of the d shares before applying a 1st order DSCA
 - HO-DSCA complexity is exponential in the masking order

Fault Attacks (1/2)

- Induce a logical error during a crypto. operation
- Different physical means to induce such an error power glitch, clock glitch, light beam, EM field . . .
- Exploit few pairs of valid/faulty ciphertexts to retrieve the key
- A FA requires a Fault Model based on an Invariant

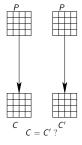
Fault Attacks (2/2)

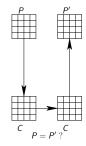
Definition

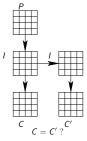
A Fault Model is a function f such that:

$$f: x \to x \star e \tag{1}$$

x target variable, e fault logical effect and * a logical operation


New classification of FA based on the Invariant

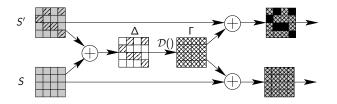

- FA based on a Fixed Fault Diffusion Pattern
 [Piret+ 2003], [Mukhopadhyay+ 2009] ...
- FA based on a Fixed Fault Logical Effect
 Safe Error Attack, [Roche+ 2011]...



Classical FA Countermeasures (1/2)

- First classical FA countermeasure: Detection scheme
- 3 classical Detection schemes:

Full Duplication


Encrypt/Decrypt

Partial Duplication

Classical FA Countermeasures (2/2)

- Second classical FA countermeasure: Infection scheme
- Generic sketch exhibiting the Infection CM:
 - S, S' the two States
 - ullet ${\cal D}$ the diffusion function (such as ${\cal D}(0)=0)$

Combined Attacks (1/2)

- Consider a secure AES implementation using:
 - A masking scheme such that SCA are unpracticable
 - A duplication countermeasure to avoid FA
- Is such an implementation really secure?
 - If one takes each attack path alone yes . . .
 - But if one mixes both attack paths . . .
- Combined Attacks exploit the side-channel leakage of a faulty encryption to bypass both SCA and FA CM
 - Combined Attack of [Clavier+ 2010]
 - Combined Attack of [Roche+ 2011]

Combined Attacks (2/2)

- Example: Combined Attack of [Roche+ 2011]
 - Encrypt N plaintexts $P_1 \dots P_N$ and keep the N ciphertexts $C_1 \dots C_N$
 - Encrypt the N plaintexts once again by injecting a fault during the penultimate round of the Key-Schedule and record the leakage traces $\Omega_1 \dots \Omega_N$
 - Exploit the side-channel leakage of the faulty ciphertext: $k = argmax(\rho(HW(SB(SB^{-1}(C_j^i \oplus \hat{k}) \oplus \hat{e}_9) \oplus \hat{k} \oplus \hat{e}_{10}), \Omega_i))$
 - The attack will work if the fault has the effect of a XOR with a non negligible rate
- Interestingly enough, up to now only FA based on a Fixed Fault Logical Effect have been extended to CA

Combined Attack Countermeasure

 In [Roche+ 2011], authors propose to perform a secure comparison to avoid the leakage of the faulty ciphertext:

Algorithm 1 Secure Comparison

Input: two masked ciphertexts $C \oplus M$ and $C' \oplus M'$ and their respective masks M and M'

Output: C if C = C', 0 otherwise

- 1. do $a = M \oplus (C' \oplus M')$
- 2. **do** $b = M' \oplus (C \oplus M)$
- 3. if a = b then return C
- 4. else return 0

Outline

- Physical Attacks
 - Side-Channel Attacks
 - Fault Attacks
 - Combined Attacks
- 2 New Attacks on Classical Countermeasures
 - Combined Attack on Detection CM
 - Fault Attacks on Infection CM
 - On the Need of Randomness
- 3 Extended Countermeasures
 - Secure Detection
 - Secure Infection
 - Summary

Combined Attack on Detection CM

- New Combined Attack on [Roche+ 2011] countermeasure:
 - At step 3 of algorithm 1, one check if a = b
 - In a lot of architectures, a comparison involves:
 - ⇒ exclusive-or or substraction

$$\Rightarrow \Pr(HW(a-b) = HW(a \oplus b) | (a,b) \in GF(2^8)^2) > 36\%$$

- Thus $\Delta = (M' \oplus (C \oplus M)) \oplus (M \oplus (C' \oplus M'))$ leaks $(C \oplus C')$
- Possibility to adapt the CA of Roche *et al.* to exploit Δ :

$$k = \operatorname{argmax}(\rho(HW(SB(SB^{-1}(C_j^i \oplus \hat{k}) \oplus \hat{e}_9) \oplus \hat{k} \oplus \hat{e}_{10} \oplus C_j^i), \Omega_i))$$

Fault Attack on Infection CM (1/2)

- We show that any Deterministic Infection CM is inefficient:
 - If Infection placed before last MixColumns
 - ⇒ inject a fault between Infection and last MixColumns
 - ⇒ case of a classical *Piret Attack*
 - If Infection placed between last MixColumns & last SubBytes
 - ⇒ inject a fault before the Infection
 - ⇒ leads to a modified *Piret Attack* exploit the *Infection instead of the MixColumns*
 - If Infection placed after the last SubBytes
 - ⇒ inject a fault before the MixColumns
 - ⇒ leads to a modified *Piret Attack*make an hypothesis on 5 bytes instead of 4

Fault Attack on Infection CM (2/2)

- [Roche+ 2011] DFA breaks any Deterministic Infection CM:
- As the fault model:
 - has to affect the Key-Schedule during its penultimate round (thus round keys 9 and 10 will be affected)
 - could be of any kind, and affect all the bytes at the same time
 - must have a good repeatability (two faults have a good chance to induce the same error)
- Any Deterministic Infection CM will have no effect against this attack

On the Need of Randomness

- Any Deterministic Detection or Infection scheme can be defeated via FA or CA
- About Detection CM:
 - CM of [Roche+ 2011]
- About Infection CM:
 - CM of [Joye+ 2007]
 - CM of [Fournier+ 2011]
- The flaw comes from the deterministic property of the CM
 ⇒ need of Randomness

Outline

- Physical Attacks
 - Side-Channel Attacks
 - Fault Attacks
 - Combined Attacks
- New Attacks on Classical Countermeasures
 - Combined Attack on Detection CM
 - Fault Attacks on Infection CM
 - On the Need of Randomness
- 3 Extended Countermeasures
 - Secure Detection
 - Secure Infection
 - Summary

Secure Detection (1/2)

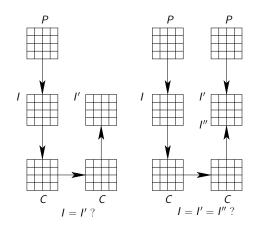
Algorithm 2 Secure Comparison

INPUT: two masked States $S \oplus M_1$ and $S' \oplus M_2$, their respective masks M_1 and M_2 and a fresh random mask $M_3 \neq 0$.

OUTPUT: S if S = S', 0 otherwise

- 1. **do** $a = M_3 \cdot (S \oplus M_1)$
- 2. **do** $b = M_3 \cdot (S' \oplus M_2)$
- 3. **do** $c = a \oplus b$

$$[= M_3 \cdot (S \oplus M_1 \oplus S' \oplus M_2)]$$


- 4. **do** $d = M_1 \oplus M_2$
- 5. **do** $e = M_3 \cdot d$

$$[= M_3 \cdot (M_1 \oplus M_2)]$$

- 6. if e = c then return $(S \oplus M_1) \oplus M_1$
- 7. else return 0

Secure Detection (2/2)

Encrypt/Partial Decrypt

Encrypt/Partial Encrypt/Partial Decrypt

Secure Infection

Algorithm 3 Secure Infection

INPUT: two masked States $S \oplus M_1$ and $S' \oplus M_2$, their respective masks M_1 and M_2 and a fresh random mask $M_3 \neq 0$ and $\neq 1$.

Output: the infected States $S \oplus M_1 \oplus \Gamma$ and $S' \oplus M_2 \oplus \Gamma$

- 1. **do** $a = M_3 \cdot (S \oplus M_1)$
- 2. **do** $b = M_3 \cdot (S' \oplus M_2)$
- 3. **do** $c = a \oplus b$
- 4. **do** $d = M_1 \oplus M_2$
- 5. **do** $e = M_3 \cdot d$
- 6. **do** $f = (S \oplus M_1) \oplus c$
- 7. **do** $g = f \oplus e$
- 8. **do** $h = (S' \oplus M_2) \oplus c$
- 9. do $i = h \oplus e$
- 10. return (g, i)

Summary

Countermeasures	Threats
Full Duplication	- Combined Attacks
	- Double Faults (bypass comparison)
Encrypt/Decrypt	- Combined Attacks
	- Double Faults (bypass comparison)
Partial Duplication	- Single Fault + Ability to Decrypt
	- Combined Attacks
	- Double Faults (bypass comparison)
Full Duplication + Mult. Mask based Secure Comp.	- Double Faults (bypass comparison)
Encrypt/Partial Decrypt	- Single Fault + Ability to Decrypt
	- Double Faults (bypass comparison)
Encrypt/Partial Encrypt/Partial Decrypt	- Double Faults (bypass comparison)
Infection with Fixed Diffusion	- Fixed fault diffusion DFA
	- Fixed fault effect DFA
Mult. Mask based Secure Infection	-
Encrypt/Partial Decrypt Infection	-

Secure Detection Secure Infection Summary

Thank you for your attention!

