
Elliptic Curve Cryptosystems
in the Presence of Faults

Marc Joye

Elliptic Curve Cryptosystems
in the Presence of Faults

Marc Joye

Elliptic Curve Cryptography

Invented [independently] by Neil Koblitz and Victor Miller in 1985

Useful for key exchange, encryption and digital signature

2 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Fault Attacks

Adversary induces faults during the computation
glitches (supply voltage or external clock)
temperature
light emission (white light or laser)
. . .

3 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

This Talk

Fault attacks and countermeasures for elliptic-curve cryptosystems
cryptographic primitives vs. cryptographic protocols

Most known fault attacks are directed to cryptographic primitives
notable exception

skipping attacks [Schmidt and Herbst, 2008]
fault model experimentally validated

List of research problems

4 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Outline

1 Elliptic Curves
Basics on elliptic curves
Elliptic curve digital signature algorithm
Other algorithms

2 Attacks
Single-bit errors
Safe errors
Random errors
Skipping attacks

3 Countermeasures
Basic countermeasures
Scalar randomization
BOS+ algorithm
New algorithm

4 Conclusion
Research problems

Basics on Elliptic Curves (1/3)

Definition
An elliptic curve over a field K is the set of points (x, y) ∈ E

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

along with the point OOO at infinity

CharK 6= 2, 3⇒ a1 = a2 = a3 = 0

CharK = 2 (non-supersingular case)⇒ a1 = 1, a3 = a4 = 0

Fact
The set E(K) forms an additive group where

OOO is the neutral element
the group law is given by the “chord-and-tangent” rule

5 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basics on Elliptic Curves (1/3)

Definition
An elliptic curve over a field K is the set of points (x, y) ∈ E

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

along with the point OOO at infinity

CharK 6= 2, 3⇒ a1 = a2 = a3 = 0

CharK = 2 (non-supersingular case)⇒ a1 = 1, a3 = a4 = 0

Fact
The set E(K) forms an additive group where

OOO is the neutral element
the group law is given by the “chord-and-tangent” rule

5 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basics on Elliptic Curves (2/3)

Elliptic curves over R

y2 = x3 − 7x
PPP = (−2.35,−1.86),QQQ = (−0.1, 0.836)

RRR = (3.89,−5.62)

y2 = x3 − 3x + 5

PPP = (2, 2.65)

RRR = (1.11, 2.64)

6 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basics on Elliptic Curves (2/3)

Elliptic curves over R

y2 = x3 − 7x
PPP = (−2.35,−1.86),QQQ = (−0.1, 0.836)

RRR = (3.89,−5.62)

y2 = x3 − 3x + 5
PPP = (2, 2.65)

RRR = (1.11, 2.64)

6 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basics on Elliptic Curves (3/3)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

Let PPP = (x1, y1) and QQQ = (x2, y2)

Group law
PPP +OOO = OOO+ PPP = PPP
−PPP = (x1,−y1 − a1 x1 − a3)
PPP +QQQ = (x3, y3) where

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = (x1 − x3)λ− y1 − a1x3 − a3

with λ =

y1 − y2

x1 − x2
[addition]

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
[doubling]

7 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basics on Elliptic Curves (3/3)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

Let PPP = (x1, y1) and QQQ = (x2, y2)

Group law
PPP +OOO = OOO+ PPP = PPP
−PPP = (x1,−y1 − a1 x1 − a3)
PPP +QQQ = (x3, y3) where

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = (x1 − x3)λ− y1 − a1x3 − a3

with λ =

y1 − y2

x1 − x2
[addition]

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
[doubling]

7 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basics on Elliptic Curves (3/3)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

Let PPP = (x1, y1) and QQQ = (x2, y2)

Group law
PPP +OOO = OOO+ PPP = PPP
−PPP = (x1,−y1 − a1 x1 − a3)
PPP +QQQ = (x3, y3) where

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = (x1 − x3)λ− y1 − a1x3 − a3

with λ =

y1 − y2

x1 − x2
[addition]

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
[doubling]

7 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basics on Elliptic Curves (3/3)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

Let PPP = (x1, y1) and QQQ = (x2, y2)

Group law
PPP +OOO = OOO+ PPP = PPP
−PPP = (x1,−y1 − a1 x1 − a3)
PPP +QQQ = (x3, y3) where

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = (x1 − x3)λ− y1 − a1x3 − a3

with λ =

y1 − y2

x1 − x2
[addition]

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
[doubling]

7 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Primitive

EC primitive = point multiplication (a.k.a. scalar multiplication)
E(K)× Z→ E(K), (PPP,d) 7→ QQQ = [d]PPP

one-way function

Cryptographic elliptic curves
K = Fq with q = p (a prime) or q = 2m

#E(K) = h n with h ∈ {1, 2, 3, 4} and n prime
typical size: |n|2 = 224 (≈ |K|2)

Definition (ECDL Problem)

Let G = 〈PPP〉 ⊆ E(K) a subgroup of prime order n
Given points PPP,QQQ ∈ G, compute d such that QQQ = [d]PPP

8 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Digital Signature Algorithm (1/2)

Elliptic curve variant of the Digital Signature Algorithm
a.k.a. Digital Signature Standard – DSS
included in IEEE P1363, ANSI X9.62, FIPS 186.2, SECG, and ISO 15946-2

Domain parameters
finite field Fq
elliptic curve E/Fq with #E(Fq) = h n

cofactor h 6 4 and n prime

cryptographic hash function H
point GGG ∈ E of prime order n

{Fq, E, n,h,H,GGG}

9 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Digital Signature Algorithm (1/2)

Elliptic curve variant of the Digital Signature Algorithm
a.k.a. Digital Signature Standard – DSS
included in IEEE P1363, ANSI X9.62, FIPS 186.2, SECG, and ISO 15946-2

Domain parameters
finite field Fq
elliptic curve E/Fq with #E(Fq) = h n

cofactor h 6 4 and n prime

cryptographic hash function H
point GGG ∈ E of prime order n

{Fq, E, n,h,H,GGG}

9 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Digital Signature Algorithm (2/2)

Key generation: YYY = [d]GGG with d $← {1, . . . , n− 1}
pk = {GGG,YYY} and sk = {d}

Signing
Input message m and private key sk

Output signature S = (r, s)

1 pick a random k ∈ {1, . . . , n− 1}
2 compute TTT = [k]GGG and set r = x(TTT) (mod n)
3 if r = 0 then goto Step 1
4 compute s = (H(m) + d r)/k (mod n)
5 return S = (r, s)

Verification
1 compute u1 = H(m)/s (mod n) and u2 = r/s (mod n)
2 compute TTT = [u1]GGG+ [u2]YYY
3 check whether r ≡ x(TTT) (mod n)

10 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Digital Signature Algorithm (2/2)

Key generation: YYY = [d]GGG with d $← {1, . . . , n− 1}
pk = {GGG,YYY} and sk = {d}

Signing
Input message m and private key sk

Output signature S = (r, s)

1 pick a random k ∈ {1, . . . , n− 1}
2 compute TTT = [k]GGG and set r = x(TTT) (mod n)
3 if r = 0 then goto Step 1
4 compute s = (H(m) + d r)/k (mod n)
5 return S = (r, s)

Verification
1 compute u1 = H(m)/s (mod n) and u2 = r/s (mod n)
2 compute TTT = [u1]GGG+ [u2]YYY
3 check whether r ≡ x(TTT) (mod n)

10 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Digital Signature Algorithm (2/2)

Key generation: YYY = [d]GGG with d $← {1, . . . , n− 1}
pk = {GGG,YYY} and sk = {d}

Signing
Input message m and private key sk

Output signature S = (r, s)

1 pick a random k ∈ {1, . . . , n− 1}
2 compute TTT = [k]GGG and set r = x(TTT) (mod n)
3 if r = 0 then goto Step 1
4 compute s = (H(m) + d r)/k (mod n)
5 return S = (r, s)

Verification
1 compute u1 = H(m)/s (mod n) and u2 = r/s (mod n)
2 compute TTT = [u1]GGG+ [u2]YYY
3 check whether r ≡ x(TTT) (mod n)

10 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Public Key Validation

For each received pk = {domain params,YYY}, check that
1 YYY ∈ E
2 YYY 6= OOO
3 (optional) [n]YYY = OOO

11 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Diffie-Hellman Key Exchange

ECDH = Elliptic Curve Diffie-Hellman protocol
elliptic curve variant of the Diffie-Hellman key exchange

Alice Bob

a
RARARA=[a]GGG−−−−−−−→ RARARA

RBRBRB
RBRBRB=[b]GGG←−−−−−−− b

KAKAKA = [a]RBRBRB KBKBKB = [b]RARARA

suffers from the man-in-the-middle attack
no data-origin authentication
exchanged messages should be signed

ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol
implicit authentication

12 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Diffie-Hellman Key Exchange

ECDH = Elliptic Curve Diffie-Hellman protocol
elliptic curve variant of the Diffie-Hellman key exchange

Alice Bob

a
RARARA=[a]GGG−−−−−−−→ RARARA

RBRBRB
RBRBRB=[b]GGG←−−−−−−− b

KAKAKA = [a]RBRBRB KBKBKB = [b]RARARA

suffers from the man-in-the-middle attack
no data-origin authentication
exchanged messages should be signed

ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol
implicit authentication

12 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Diffie-Hellman Key Exchange

ECDH = Elliptic Curve Diffie-Hellman protocol
elliptic curve variant of the Diffie-Hellman key exchange

Alice Bob

a
RARARA=[a]GGG−−−−−−−→ RARARA

RBRBRB
RBRBRB=[b]GGG←−−−−−−− b

KAKAKA = [a]RBRBRB KBKBKB = [b]RARARA

suffers from the man-in-the-middle attack
no data-origin authentication
exchanged messages should be signed

ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol
implicit authentication

12 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

EC Diffie-Hellman Key Exchange

ECDH = Elliptic Curve Diffie-Hellman protocol
elliptic curve variant of the Diffie-Hellman key exchange

Alice Bob

a
RARARA=[a]GGG−−−−−−−→ RARARA

RBRBRB
RBRBRB=[b]GGG←−−−−−−− b

KAKAKA = [a]RBRBRB KBKBKB = [b]RARARA

suffers from the man-in-the-middle attack
no data-origin authentication
exchanged messages should be signed

ECMQV = Elliptic Curve Menezes-Qu-Vanstone protocol
implicit authentication

12 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

ECDH Augmented Encryption (1/2)

ECIES = Elliptic Curve Integrated Encryption System
proposed by Michel Abdalla, Mihir Bellare and Phillip Rogaway in 2000
submitted to IEEE P1363a

Domain parameters
finite field Fq

elliptic curve E/Fq with #E(Fq) = h n
“special” hash functions

message authentication code MACK(c)
key derivation function KD(TTT, `)

symmetric encryption algorithm EncK(m)
point GGG ∈ E of prime order n

{Fq, E, n,h,MAC,KD, Enc,GGG}

13 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

ECDH Augmented Encryption (1/2)

ECIES = Elliptic Curve Integrated Encryption System
proposed by Michel Abdalla, Mihir Bellare and Phillip Rogaway in 2000
submitted to IEEE P1363a

Domain parameters
finite field Fq

elliptic curve E/Fq with #E(Fq) = h n
“special” hash functions

message authentication code MACK(c)
key derivation function KD(TTT, `)

symmetric encryption algorithm EncK(m)
point GGG ∈ E of prime order n

{Fq, E, n,h,MAC,KD, Enc,GGG}

13 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

ECDH Augmented Encryption (2/2)

Key generation: YYY = [d]GGG with d $← {1, . . . , n− 1}
pk = {GGG,YYY} and sk = {d}
ECIES encryption

1 pick a random k ∈ {1, . . . , n− 1}
2 compute UUU = [k]GGG and TTT = [k]YYY
3 set (K1‖K2) = KD(TTT, l)
4 compute c = EncK1(m) and r = MACK2(c)
5 return (UUU, c, r)

ECIES decryption
Input ciphertext (UUU, c, r) and private key sk

Output plaintext m or ⊥
1 compute T ′T ′T ′ = [d]UUU
2 set (K′1‖K′2) = KD(T ′T ′T ′, l)
3 if MACK′2

(c) = r then return m = Enc−1
K′1

(c)

14 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

ECDH Augmented Encryption (2/2)

Key generation: YYY = [d]GGG with d $← {1, . . . , n− 1}
pk = {GGG,YYY} and sk = {d}
ECIES encryption

1 pick a random k ∈ {1, . . . , n− 1}
2 compute UUU = [k]GGG and TTT = [k]YYY
3 set (K1‖K2) = KD(TTT, l)
4 compute c = EncK1(m) and r = MACK2(c)
5 return (UUU, c, r)

ECIES decryption
Input ciphertext (UUU, c, r) and private key sk

Output plaintext m or ⊥
1 compute T ′T ′T ′ = [d]UUU
2 set (K′1‖K′2) = KD(T ′T ′T ′, l)
3 if MACK′2

(c) = r then return m = Enc−1
K′1

(c)

14 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

ECDH Augmented Encryption (2/2)

Key generation: YYY = [d]GGG with d $← {1, . . . , n− 1}
pk = {GGG,YYY} and sk = {d}
ECIES encryption

1 pick a random k ∈ {1, . . . , n− 1}
2 compute UUU = [k]GGG and TTT = [k]YYY
3 set (K1‖K2) = KD(TTT, l)
4 compute c = EncK1(m) and r = MACK2(c)
5 return (UUU, c, r)

ECIES decryption
Input ciphertext (UUU, c, r) and private key sk

Output plaintext m or ⊥
1 compute T ′T ′T ′ = [d]UUU
2 set (K′1‖K′2) = KD(T ′T ′T ′, l)
3 if MACK′2

(c) = r then return m = Enc−1
K′1

(c)

14 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Outline

1 Elliptic Curves
Basics on elliptic curves
Elliptic curve digital signature algorithm
Other algorithms

2 Attacks
Single-bit errors
Safe errors
Random errors
Skipping attacks

3 Countermeasures
Basic countermeasures
Scalar randomization
BOS+ algorithm
New algorithm

4 Conclusion
Research problems

Fault Attacks on ECC

Bit-level vs. byte-level attacks
Transient vs. permanent faults
Private vs. public parameters
Unsigned vs. signed representations
Fixed vs. changing base point
Basic vs. provably secure systems

15 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Forcing-Bit Attack

Let d =
∑`−1

i=0 di 2i

Forcing bit: dj → 0

ECDSA ECDSA

Check whether S = (r, s) is a valid signature
if so, then dj = 0
if not, then dj = 1

(Similarly applies when kj → 0 in Step 4)

ECIES ECIES

Check the ciphertext validity
if the output is m then dj = 0
if the output is ⊥ then dj = 1

16 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Flipping-Bit Attack

Against ECDSA ECDSA

Let d =
∑`−1

i=0 di 2i

Flipping bit: dj → dj

⇒ Ŝ = (r, ŝ) with

{
ŝ = (H(m) + d̂ r)/k (mod n)
d̂ = (dj − dj)2j + d

Define û1 = H(m)/ŝ (mod n) and û2 = r/ŝ (mod n)
Compute T̂TT = [û1]GGG+ [û2]YYY
For j = 0 to `− 1 and σ ∈ {−1, 1}, check if

x
(
T̂TT +

[σ 2jr
ŝ

]
GGG
)

= x
(
[k]GGG

)
= r ⇒ dj − dj = σ

⇒ dj = 1−σ
2

17 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Flipping-Bit Attack

Against ECDSA ECDSA

Let d =
∑`−1

i=0 di 2i

Flipping bit: dj → dj

⇒ Ŝ = (r, ŝ) with

{
ŝ = (H(m) + d̂ r)/k (mod n)
d̂ = (dj − dj)2j + d

Define û1 = H(m)/ŝ (mod n) and û2 = r/ŝ (mod n)
Compute T̂TT = [û1]GGG+ [û2]YYY
For j = 0 to `− 1 and σ ∈ {−1, 1}, check if

x
(
T̂TT +

[σ 2jr
ŝ

]
GGG
)

= x
(
[k]GGG

)
= r ⇒ dj − dj = σ

⇒ dj = 1−σ
2

17 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Flipping-Bit Attack

Against ECDSA ECDSA

Let d =
∑`−1

i=0 di 2i

Flipping bit: dj → dj

⇒ Ŝ = (r, ŝ) with

{
ŝ = (H(m) + d̂ r)/k (mod n)
d̂ = (dj − dj)2j + d

Define û1 = H(m)/ŝ (mod n) and û2 = r/ŝ (mod n)
Compute T̂TT = [û1]GGG+ [û2]YYY
For j = 0 to `− 1 and σ ∈ {−1, 1}, check if

x
(
T̂TT +

[σ 2jr
ŝ

]
GGG
)

= x
(
[k]GGG

)
= r ⇒ dj − dj = σ

⇒ dj = 1−σ
2

17 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Flipping-Bit Attack

Against ECDSA ECDSA

Let d =
∑`−1

i=0 di 2i

Flipping bit: dj → dj

⇒ Ŝ = (r, ŝ) with

{
ŝ = (H(m) + d̂ r)/k (mod n)
d̂ = (dj − dj)2j + d

Define û1 = H(m)/ŝ (mod n) and û2 = r/ŝ (mod n)
Compute T̂TT = [û1]GGG+ [û2]YYY
For j = 0 to `− 1 and σ ∈ {−1, 1}, check if

x
(
T̂TT +

[σ 2jr
ŝ

]
GGG
)

= x
(
[k]GGG

)
= r ⇒ dj − dj = σ

⇒ dj = 1−σ
2

17 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Flipping-Bit Attack

Against ECDSA ECDSA

Let d =
∑`−1

i=0 di 2i

Flipping bit: dj → dj

⇒ Ŝ = (r, ŝ) with

{
ŝ = (H(m) + d̂ r)/k (mod n)
d̂ = (dj − dj)2j + d

Define û1 = H(m)/ŝ (mod n) and û2 = r/ŝ (mod n)
Compute T̂TT = [û1]GGG+ [û2]YYY
For j = 0 to `− 1 and σ ∈ {−1, 1}, check if

x
(
T̂TT +

[σ 2jr
ŝ

]
GGG
)

= x
(
[k]GGG

)
= r ⇒ dj − dj = σ

⇒ dj = 1−σ
2

17 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Sign-Change Fault Attack

Point inversion is inexpensive on elliptic curves
PPP = (x1, y1) ⇒ −PPP = (x1,−y1 − a1 x1 − a3)

Signed-digit point multiplication algorithms are preferred for computing
QQQ = [d]PPP

e.g., NAF-based method gives a speed-up factor of 11.11%

d =
∑`

i=0 δi 2
i with δi ∈ {0, 1,−1}

Signed-digit encoding: δi = (sign bit, value bit),
0 = (?, 0), 1 = (0, 1), −1 = (1, 1)

Sign-change fault attack (specialized flipping-bit attack)

Induce a fault in the sign bit of δi
on the fly
during exponent recoding

18 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (1/2)

Double-and-add-always algorithm
additive variant of the square-and-multiply-always

Input: UUU, d = (d`−1, . . . , d0)2

Output: TTT = [d]UUU

1 R0R0R0 ← OOO; R1R1R1 ← OOO
2 For i = `− 1 downto 0 do

R0R0R0 ← [2]R0R0R0
b← 1− di; RbRbRb ← RbRbRb +UUU

3 Return R0R0R0

when b = 1, there is a dummy point addition

19 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (1/2)

Double-and-add-always algorithm
additive variant of the square-and-multiply-always

Input: UUU, d = (d`−1, . . . , d0)2

Output: TTT = [d]UUU

1 R0R0R0 ← OOO; R1R1R1 ← OOO
2 For i = `− 1 downto 0 do

R0R0R0 ← [2]R0R0R0
b← 1− di; RbRbRb ← RbRbRb +UUU

3 Return R0R0R0

when b = 1, there is a dummy point addition

19 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (2/2)

Against ECIES ECIES

Timely induce a fault into the ALU during the add operation at
iteration i
Check the output

if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
⇒ di = 1

if the result is correct then the point addition was
dummy [safe error]
⇒ di = 0

Re-iterate the attack for another value of i

20 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (2/2)

Against ECIES ECIES

Timely induce a fault into the ALU during the add operation at
iteration i
Check the output

if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
⇒ di = 1

if the result is correct then the point addition was
dummy [safe error]
⇒ di = 0

Re-iterate the attack for another value of i

20 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (2/2)

Against ECIES ECIES

Timely induce a fault into the ALU during the add operation at
iteration i
Check the output

if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
⇒ di = 1

if the result is correct then the point addition was
dummy [safe error]
⇒ di = 0

Re-iterate the attack for another value of i

20 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (2/2)

Against ECIES ECIES

Timely induce a fault into the ALU during the add operation at
iteration i
Check the output

if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
⇒ di = 1

if the result is correct then the point addition was
dummy [safe error]
⇒ di = 0

Re-iterate the attack for another value of i

20 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (2/2)

Against ECIES ECIES

Timely induce a fault into the ALU during the add operation at
iteration i
Check the output

if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
⇒ di = 1

if the result is correct then the point addition was
dummy [safe error]
⇒ di = 0

Re-iterate the attack for another value of i

20 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Safe-Error Attack (2/2)

Against ECIES ECIES

Timely induce a fault into the ALU during the add operation at
iteration i
Check the output

if an invalid ciphertext is notified (i.e., ⊥) then the error was effective
⇒ di = 1

if the result is correct then the point addition was
dummy [safe error]
⇒ di = 0

Re-iterate the attack for another value of i

20 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Errors in Public Routines

Digital signatures are often used for authentication purposes
e.g., only signed software can run on a given device

Idea: inject a fault during the verification process

Public routines (parameters) should be checked for faults

21 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Errors in Public Routines

Digital signatures are often used for authentication purposes
e.g., only signed software can run on a given device

Idea: inject a fault during the verification process

Public routines (parameters) should be checked for faults

21 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Random Errors Against EC Primitive

Attack model
EC parameters are in non-volatile memory

permanent faults in a unknown position,
in any system parameter
transient fault during parameter transfer

Adversary’s goal
Recover the value of d in the computation of QQQ = [d]PPP

22 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Key Observation (1/2)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

Let PPP = (x1, y1) and QQQ = (x2, y2)

PPP +QQQ = (x3, y3) where

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = (x1 − x3)λ− y1 − a1x3 − a3

with λ =

y1 − y2

x1 − x2
[addition]

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
[doubling]

Parameter a6 is not involved in point addition (or
point doubling)

23 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Key Observation (2/2)

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

If a ‘point’ P̃̃P̃P = (x̃, ỹ) ∈ Fq × Fq but P̃̃P̃P /∈ E then the computation of
Q̃̃Q̃Q = [d]P̃̃P̃P will take place on the curve

Ẽ : y2 + a1xy + a3y = x3 + a2x2 + a4x + ã6

where ã6 = ỹ2 + a1x̃ỹ + a3ỹ − x̃3 − a2x̃2 − a4x̃
Now if

1 ordẼ(P̃̃P̃P) = t is small
2 discrete logarithms are computable in 〈P̃̃P̃P〉

then
d (mod t)

can be recovered from Q̃̃Q̃Q

24 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Chosen Input Point Attack

Construct a ‘point’ P̃iP̃iP̃i = (x̃i, ỹi) ∈ Ẽi such that
1 ordẼi

(P̃iP̃iP̃i) = ti is small

2 discrete logarithms are computable in 〈P̃iP̃iP̃i〉

Query the device with P̃iP̃iP̃i and receive Q̃iQ̃iQ̃i = [d]P̃iP̃iP̃i
Solve the discrete logarithm and recover d (mod ti)
Iterating the process gives

d (mod ti) for several ti
d by Chinese remaindering

(This attack can easily be prevented using the curve equation)

25 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Base Point

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: PPP = (x1, y1)→ P̂̂P̂P = (x̂1, y1) ∈ Ẽ

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 = ŷ2

d − x̂3
d − a4x̂d (mod p)

x̂1 is a root in Fp[X] of X3 + a4X + ã6 − y2
1

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Similar attack when the y-coordinate of PPP is corrupted
More assumptions are needed when both coordinates are corrupted

26 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Base Point

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: PPP = (x1, y1)→ P̂̂P̂P = (x̂1, y1) ∈ Ẽ

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 = ŷ2

d − x̂3
d − a4x̂d (mod p)

x̂1 is a root in Fp[X] of X3 + a4X + ã6 − y2
1

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Similar attack when the y-coordinate of PPP is corrupted
More assumptions are needed when both coordinates are corrupted

26 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Base Point

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: PPP = (x1, y1)→ P̂̂P̂P = (x̂1, y1) ∈ Ẽ

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 = ŷ2

d − x̂3
d − a4x̂d (mod p)

x̂1 is a root in Fp[X] of X3 + a4X + ã6 − y2
1

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Similar attack when the y-coordinate of PPP is corrupted
More assumptions are needed when both coordinates are corrupted

26 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Base Point

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: PPP = (x1, y1)→ P̂̂P̂P = (x̂1, y1) ∈ Ẽ

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 = ŷ2

d − x̂3
d − a4x̂d (mod p)

x̂1 is a root in Fp[X] of X3 + a4X + ã6 − y2
1

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Similar attack when the y-coordinate of PPP is corrupted
More assumptions are needed when both coordinates are corrupted

26 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Base Point

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: PPP = (x1, y1)→ P̂̂P̂P = (x̂1, y1) ∈ Ẽ

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 = ŷ2

d − x̂3
d − a4x̂d (mod p)

x̂1 is a root in Fp[X] of X3 + a4X + ã6 − y2
1

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Similar attack when the y-coordinate of PPP is corrupted
More assumptions are needed when both coordinates are corrupted

26 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Base Point

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: PPP = (x1, y1)→ P̂̂P̂P = (x̂1, y1) ∈ Ẽ

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 = ŷ2

d − x̂3
d − a4x̂d (mod p)

x̂1 is a root in Fp[X] of X3 + a4X + ã6 − y2
1

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Similar attack when the y-coordinate of PPP is corrupted
More assumptions are needed when both coordinates are corrupted

26 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Base Point

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: PPP = (x1, y1)→ P̂̂P̂P = (x̂1, y1) ∈ Ẽ

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 = ŷ2

d − x̂3
d − a4x̂d (mod p)

x̂1 is a root in Fp[X] of X3 + a4X + ã6 − y2
1

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Similar attack when the y-coordinate of PPP is corrupted
More assumptions are needed when both coordinates are corrupted

26 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Definition Field

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: p→ p̂

Device outputs Q̂̂Q̂Q = [d]P̂̂P̂P with P̂̂P̂P = (x̂1, ŷ1) and
x̂1 ≡ x1 (mod p̂) and ŷ1 ≡ y1 (mod p̂)

Q̂̂Q̂Q = [d](x̂1, y1) = (x̂d, ŷd) ∈ Ẽ
⇒ ã6 ≡ ŷ2

d − x̂3
d − a4x̂d ≡ ŷ2

1 − x̂3
1 − a4x̂1 (mod p̂)

p̂ divides (ŷ2
d − x̂3

d − a4x̂d)− (ŷ2
1 − x̂3

1 − a4x̂1)

Compute d (mod t) from Q̂̂Q̂Q = [d]P̂̂P̂P

Case where p is a Mersenne prime; i.e., p = 2m ± 2t ± 1

27 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Faults in the Curve Parameters

Recover d in QQQ = [d]PPP on E/Fp : y
2 = x3 + a4x + a6

Fault: a4 → â4

Device outputs Q̂̂Q̂Q = [d]PPP on Ê : y2 = x3 + â4x + ã6

Q̂̂Q̂Q = [d](x1, y1) = (x̂d, ŷd) ∈ Ê
Two equations: {

y2
1 = x3

1 + â4x1 + ã6

ŷ2
d = x̂3

d + â4x̂d + ã6

⇒ â4 = . . . , ã6 = . . .

Compute d (mod t) from Q̂̂Q̂Q = [d]PPP

28 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Skipping Attack

Attack assumes that the attacker manages to skip a doubling operation
can be seen as a random error at the bit level

Algorithm 1 Double-and-add

Input: GGG, k = (k`−1, . . . , k0)2
Output: QQQ = [k]GGG

1: R0R0R0 ← OOO; R1R1R1 ← GGG
2: for i = `− 1 down to 0 do
3: R0R0R0 ← [2]R0R0R0
4: if ki = 1 then R0R0R0 ← R0R0R0 + R1R1R1

5: return R0R0R0

29 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Skipping Attack

Attack assumes that the attacker manages to skip a doubling operation
can be seen as a random error at the bit level

Algorithm 2 Double-and-add

Input: GGG, k = (k`−1, . . . , k0)2
Output: QQQ = [k]GGG

1: R0R0R0 ← OOO; R1R1R1 ← GGG
2: for i = `− 1 down to 0 do
3: R0R0R0 ← [2]R0R0R0
4: if ki = 1 then R0R0R0 ← R0R0R0 + R1R1R1

5: return R0R0R0

29 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Application to ECDSA

doubling skipped at iteration j
TTT T̂TT where

T̂TT =
`−1∑
i=j+1

[ki 2i−1]GGG+

j∑
i=0

[ki 2i]GGG

= [1
2]
(
TTT + [k̃]GGG

)
with k̃ = (kj, . . . , k0)2
(r, s) (r̂, ŝ)

ECDSA

Algorithm 3 Double-and-add
Input: GGG, k = (k`−1, . . . , k0)2
Output: TTT = [k]GGG

1: R0R0R0 ← OOO; R1R1R1 ← GGG
2: for i = `− 1 down to 0 do
3: R0R0R0 ← [2]R0R0R0
4: if ki = 1 then R0R0R0 ← R0R0R0 + R1R1R1

5: return R0R0R0

Observation:
[û1]GGG+ [û2]YYY = [H(m)

ŝ]GGG+ [r̂ŝ]YYY =

[H(m)+dr̂
ŝ]GGG = [k]GGG

r̂
?≡ x
(
[1
2](TTT + [k̃]GGG)

)
(mod n) with TTT = [û1]GGG+ [û2]YYY =⇒ k̃ = ...

30 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Application to ECDSA

doubling skipped at iteration j
TTT T̂TT where

T̂TT =
`−1∑
i=j+1

[ki 2i−1]GGG+

j∑
i=0

[ki 2i]GGG

= [1
2]
(
TTT + [k̃]GGG

)
with k̃ = (kj, . . . , k0)2
(r, s) (r̂, ŝ)

ECDSA

Algorithm 4 Double-and-add
Input: GGG, k = (k`−1, . . . , k0)2
Output: TTT = [k]GGG

1: R0R0R0 ← OOO; R1R1R1 ← GGG
2: for i = `− 1 down to 0 do
3: R0R0R0 ← [2]R0R0R0
4: if ki = 1 then R0R0R0 ← R0R0R0 + R1R1R1

5: return R0R0R0

Observation:
[û1]GGG+ [û2]YYY = [H(m)

ŝ]GGG+ [r̂ŝ]YYY =

[H(m)+dr̂
ŝ]GGG = [k]GGG

r̂
?≡ x
(
[1
2](TTT + [k̃]GGG)

)
(mod n) with TTT = [û1]GGG+ [û2]YYY =⇒ k̃ = ...

30 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Application to ECDSA

doubling skipped at iteration j
TTT T̂TT where

T̂TT =
`−1∑
i=j+1

[ki 2i−1]GGG+

j∑
i=0

[ki 2i]GGG

= [1
2]
(
TTT + [k̃]GGG

)
with k̃ = (kj, . . . , k0)2
(r, s) (r̂, ŝ)

ECDSA

Algorithm 5 Double-and-add
Input: GGG, k = (k`−1, . . . , k0)2
Output: TTT = [k]GGG

1: R0R0R0 ← OOO; R1R1R1 ← GGG
2: for i = `− 1 down to 0 do
3: R0R0R0 ← [2]R0R0R0
4: if ki = 1 then R0R0R0 ← R0R0R0 + R1R1R1

5: return R0R0R0

Observation:
[û1]GGG+ [û2]YYY = [H(m)

ŝ]GGG+ [r̂ŝ]YYY =

[H(m)+dr̂
ŝ]GGG = [k]GGG

r̂
?≡ x
(
[1
2](TTT + [k̃]GGG)

)
(mod n) with TTT = [û1]GGG+ [û2]YYY =⇒ k̃ = ...

30 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Outline

1 Elliptic Curves
Basics on elliptic curves
Elliptic curve digital signature algorithm
Other algorithms

2 Attacks
Single-bit errors
Safe errors
Random errors
Skipping attacks

3 Countermeasures
Basic countermeasures
Scalar randomization
BOS+ algorithm
New algorithm

4 Conclusion
Research problems

Countermeasures

Algorithmic countermeasures
memory checks, randomization, duplication, verification
Shamir’s trick (redundancy)
[rich] mathematical structure

Basic vs. concrete systems
Fixed vs. variable base point
Infective computation
BOS+ algorithm

31 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basic Countermeasures

Add CRC checks
for private and public parameters

Randomize the computation
e.g., d ← d + r n with n = ordE(PPP)

Compute the operations twice
doubles the running time

Verify the signatures
ECDSA verification is slower than signing

Check that the output point QQQ = [k]PPP is in 〈PPP〉
QQQ ∈ E
[h]QQQ 6= OOO (only implies of large order)

32 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basic Countermeasures

Add CRC checks
for private and public parameters

Randomize the computation
e.g., d ← d + r n with n = ordE(PPP)

Compute the operations twice
doubles the running time

Verify the signatures
ECDSA verification is slower than signing

Check that the output point QQQ = [k]PPP is in 〈PPP〉
QQQ ∈ E
[h]QQQ 6= OOO (only implies of large order)

32 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basic Countermeasures

Add CRC checks
for private and public parameters

Randomize the computation
e.g., d ← d + r n with n = ordE(PPP)

Compute the operations twice
doubles the running time

Verify the signatures
ECDSA verification is slower than signing

Check that the output point QQQ = [k]PPP is in 〈PPP〉
QQQ ∈ E
[h]QQQ 6= OOO (only implies of large order)

32 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basic Countermeasures

Add CRC checks
for private and public parameters

Randomize the computation
e.g., d ← d + r n with n = ordE(PPP)

Compute the operations twice
doubles the running time

Verify the signatures
ECDSA verification is slower than signing

Check that the output point QQQ = [k]PPP is in 〈PPP〉
QQQ ∈ E
[h]QQQ 6= OOO (only implies of large order)

32 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Basic Countermeasures

Add CRC checks
for private and public parameters

Randomize the computation
e.g., d ← d + r n with n = ordE(PPP)

Compute the operations twice
doubles the running time

Verify the signatures
ECDSA verification is slower than signing

Check that the output point QQQ = [k]PPP is in 〈PPP〉
QQQ ∈ E
[h]QQQ 6= OOO (only implies of large order)

32 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (1/2)

Scalar d should be randomized
d∗ ← d + r#E may not be a good solution

security issue

Example (secp160k1)

p = 2160 − 232 − 538D16 [generalized] Mersenne prime
#E = 01 00000000 00000000 0001B8FA 16DFAB9A CA16B6B316

⇒ d∗ = d + r#E = (r)2 ‖ d`−1 · · ·d`−t ‖ some bits

33 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (1/2)

Scalar d should be randomized
d∗ ← d + r#E may not be a good solution

security issue

Example (secp160k1)

p = 2160 − 232 − 538D16 [generalized] Mersenne prime
#E = 01 00000000 00000000 0001B8FA 16DFAB9A CA16B6B316

⇒ d∗ = d + r#E = (r)2 ‖ d`−1 · · ·d`−t ‖ some bits

33 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (1/2)

Scalar d should be randomized
d∗ ← d + r#E may not be a good solution

security issue

Example (secp160k1)

p = 2160 − 232 − 538D16 [generalized] Mersenne prime
#E = 01 00000000 00000000 0001B8FA 16DFAB9A CA16B6B316

⇒ d∗ = d + r#E = (r)2 ‖ d`−1 · · ·d`−t ‖ some bits

33 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (2/2)

Use splitting methods
additive:

[d]PPP = [d − r]PPP + [r]PPP

multiplicative:
[d]PPP = [d r−1]

(
[r]PPP
)

Euclidean splitting

Write d = bd/rcr + (d mod r) for a random r

=⇒ [d]PPP = [d mod r]PPP +
[
bd/rc

](
[r]PPP
)

Strauss-Shamir double ladder

34 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (2/2)

Use splitting methods
additive:

[d]PPP = [d − r]PPP + [r]PPP

multiplicative:
[d]PPP = [d r−1]

(
[r]PPP
)

Euclidean splitting

Write d = bd/rcr + (d mod r) for a random r

=⇒ [d]PPP = [d mod r]PPP +
[
bd/rc

](
[r]PPP
)

Strauss-Shamir double ladder

34 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (2/2)

Use splitting methods
additive:

[d]PPP = [d − r]PPP + [r]PPP

multiplicative:
[d]PPP = [d r−1]

(
[r]PPP
)

Euclidean splitting

Write d = bd/rcr + (d mod r) for a random r

=⇒ [d]PPP = [d mod r]PPP +
[
bd/rc

](
[r]PPP
)

Strauss-Shamir double ladder

34 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (2/2)

Use splitting methods
additive:

[d]PPP = [d − r]PPP + [r]PPP

multiplicative:
[d]PPP = [d r−1]

(
[r]PPP
)

Euclidean splitting

Write d = bd/rcr + (d mod r) for a random r

=⇒ [d]PPP = [d mod r]PPP +
[
bd/rc

](
[r]PPP
)

Strauss-Shamir double ladder

34 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Multiplier Randomization (2/2)

Use splitting methods
additive:

[d]PPP = [d − r]PPP + [r]PPP

multiplicative:
[d]PPP = [d r−1]

(
[r]PPP
)

Euclidean splitting

Write d = bd/rcr + (d mod r) for a random r

=⇒ [d]PPP = [d mod r]PPP +
[
bd/rc

](
[r]PPP
)

Strauss-Shamir double ladder

34 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Preventing Fault Attacks: The Case of RSA

Shamir’s countermeasure

1 Choose a (small) random integer r
2 Compute S∗ = ṁd mod rN and Z = ṁd mod r
3 If S∗ ≡ Z (mod r) then output S = S∗ mod N,

otherwise return error

Giraud’s countermeasure

1 Compute ṁd mod N using Montgomery ladder and obtain the pair
(Z, S) = (ṁd−1 mod N, ṁd mod N)

2 If Z ṁ ≡ S (mod N) then output S,
otherwise return error

35 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Preventing Fault Attacks: The Case of RSA

Shamir’s countermeasure

1 Choose a (small) random integer r
2 Compute S∗ = ṁd mod rN and Z = ṁd mod r
3 If S∗ ≡ Z (mod r) then output S = S∗ mod N,

otherwise return error

Giraud’s countermeasure

1 Compute ṁd mod N using Montgomery ladder and obtain the pair
(Z, S) = (ṁd−1 mod N, ṁd mod N)

2 If Z ṁ ≡ S (mod N) then output S,
otherwise return error

35 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Infective Computation

Reminder:
Decisional tests should be avoided
Inducing a random fault in the status register flips the value of the zero
flag bit with a probability of 50%

Infective computation

Make the decisional tests implicit and “infect” the computation in case of
error detection

Example:

If (T[a] = b) then return a else error
⇒ Return (T[a]− b) · r + a

36 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Infective Computation

Reminder:
Decisional tests should be avoided
Inducing a random fault in the status register flips the value of the zero
flag bit with a probability of 50%

Infective computation

Make the decisional tests implicit and “infect” the computation in case of
error detection

Example:

If (T[a] = b) then return a else error
⇒ Return (T[a]− b) · r + a

36 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Infective Computation

Reminder:
Decisional tests should be avoided
Inducing a random fault in the status register flips the value of the zero
flag bit with a probability of 50%

Infective computation

Make the decisional tests implicit and “infect” the computation in case of
error detection

Example:

If (T[a] = b) then return a else error
⇒ Return (T[a]− b) · r + a

36 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Edwards Curves

E/Fp : ax
2 + y2 = 1 + bx2y2 where ab(a− b) 6= 0

Addition law
OOO = (0, 1) [neutral element]
−(x1, y1) = (−x1, y1)
(x1, y1) + (x2, y2) = (x3, y3) where

x3 =
x1y2 + x2y1

1 + bx1x2y1y2
, y3 =

y1y2 − ax1x2

1− bx1x2y1y2

. . . also valid for point doubling (and OOO)

Addition law is complete if a is a square and b is a non-square

37 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Shamir’s Trick for Elliptic Curve Cryptosystems

PPP = (x1, y1) ∈ E/Fp : ax
2 + y2 = 1 + bx2y2

Let R = Z/prZ for a (small) random prime r
1 Compute

Q∗Q∗Q∗ ← [d]PPP ∈ Epr(Z/prZ)
YYY ← [d]PPP ∈ E(Fr)

2 If (Q∗Q∗Q∗ 6≡ YYY (mod r)) then return error
3 Return Q∗Q∗Q∗ mod p

38 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Shamir’s Trick for Elliptic Curve Cryptosystems

PPP = (x1, y1) ∈ E/Fp : ax
2 + y2 = 1 + bx2y2

Let R = Z/prZ for a (small) random prime r
1 Compute

Epr ← CRT(E, Er) where Er/Fr : ax
2 + y2 = 1 + brx2y2

Q∗Q∗Q∗ ← [d]PPP ∈ Epr(Z/prZ)
YYY ← [d]PPPr ∈ Er(Fr)

2 If (Q∗Q∗Q∗ 6≡ YYY (mod r)) then return error
3 Return Q∗Q∗Q∗ mod p

Idea #1
Let br = (ax2

1 + y2
1 − 1)/(x2

1y
2
1) mod r so that PPPr := PPP mod r ∈ Er

. . . but completeness is not guaranteed (and #Er is unknown)

38 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Shamir’s Trick for Elliptic Curve Cryptosystems

PPP = (x1, y1) ∈ E/Fp : ax
2 + y2 = 1 + bx2y2

Let R = Z/prZ for a (small) random prime r
1 Compute

Epr ← CRT(E, Er) and P∗P∗P∗ ← CRT(PPP,PPPr)
Q∗Q∗Q∗ ← [d]P∗P∗P∗ ∈ Epr(Z/prZ)
YYY ← [d (mod nr)]PPPr ∈ Er(Fr)

2 If (Q∗Q∗Q∗ 6≡ YYY (mod r)) then return error
3 Return Q∗Q∗Q∗ mod p

Idea #2
Fix Er(Fr) = 〈PPPr〉 so that addition is complete

. . . but r is now a priori fixed and values must be pre-stored

38 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

BOS+ Algorithm

Blömer, Otto, and Seifert (FDTC 2005)

Input: PPP ∈ E , d
Output: QQQ = [d]PPP
In memory: {Er,PPPr ∈ Er, nr = #Er}

1 Compute

1 Epr ← CRT(E , Er) and P∗P∗P∗ ← CRT(PPP,PPPr)
2 Q∗Q∗Q∗ ← [d]P∗P∗P∗ ∈ Epr = (xpr, ypr)
3 YYY ← [d (mod nr)]PPPr ∈ Er = (xr, yr)

4

{
cx ← 1 + xpr − xr (mod r)
cy ← 1 + ypr − yr (mod r)

2 If (Q∗Q∗Q∗ 6≡ YYY (mod r)) then return error

3 Return Q∗Q∗Q∗ (mod p) ∈ E

39 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

BOS+ Algorithm

Blömer, Otto, and Seifert (FDTC 2005)

Input: PPP ∈ E , d
Output: QQQ = [d]PPP
In memory: {Er,PPPr ∈ Er, nr = #Er}

1 Compute

1 Epr ← CRT(E , Er) and P∗P∗P∗ ← CRT(PPP,PPPr)
2 Q∗Q∗Q∗ ← [d]P∗P∗P∗ ∈ Epr = (xpr, ypr)
3 YYY ← [d (mod nr)]PPPr ∈ Er = (xr, yr)

4

{
cx ← 1 + xpr − xr (mod r)
cy ← 1 + ypr − yr (mod r)

2 For a κ-bit random ρ, compute γ ←
⌊ ρ cx+(2κ−ρ)cy)

2κ
⌋

3 Return QQQ = [γ]Q∗Q∗Q∗ (mod p) ∈ E

39 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Shamir’s Trick for Elliptic Curve Cryptosystems ?!

PPP = (x1, y1) ∈ E/Fp : ax
2 + y2 = 1 + bx2y2

Let R = Z/prZ for a (small) random prime r
1 Compute

Epr ← CRT(E, Er) and P∗P∗P∗ ← CRT(PPP,PPPr)
Q∗Q∗Q∗ ← [d]P∗P∗P∗ ∈ Epr(Z/prZ)
YYY ← [d (mod nr)]PPPr ∈ Er(Z/rZ)

2 If (Q∗Q∗Q∗ 6≡ YYY (mod r)) then return error
3 Return Q∗Q∗Q∗ mod p

Idea #3 (???)
Choose Er(Z/rZ) = 〈PPPr〉, so that (i) addition is complete, (ii) nr = #Er is
known, and (iii) no storage is required

40 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

New Algorithm

E1(Z/q2Z) =
{
(αq, 1) | α ∈ Z/qZ

}
Properties

E1 ' (Z/qZ)+, P1P1P1 = (αq, 1) ∼7→ α
#E1 = q
[d]P1P1P1 = (dx1, 1) where x1 = αq

Addition law is complete

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + bx1x2y1y2
,
y1y2 − ax1x2

1− bx1x2y1y2

)
whatever curve parameters a and b

Input: PPP ∈ E , d
Output: QQQ = [d]PPP

1 Choose a small random t

2 Define r← t2 and PPPr ← (t, 1)

3 Compute

1 P∗P∗P∗ ← CRT(PPP,PPPr)
2 Q∗Q∗Q∗ ← [d]P∗P∗P∗ ∈ E(Z/prZ) = (xpr, ypr)
3 YYY ← (dt mod r, 1) = (xr, yr)

4

{
cx ← 1 + xpr − xr (mod r)
cy ← ypr (mod r)

4 If (Q∗Q∗Q∗ 6≡ YYY (mod r)) then return error

5 Return Q∗Q∗Q∗ (mod p) ∈ E(Fp)

41 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

New Algorithm

Input: PPP ∈ E , d
Output: QQQ = [d]PPP

1 Choose a small random t

2 Define r← t2 and PPPr ← (t, 1)

3 Compute

1 P∗P∗P∗ ← CRT(PPP,PPPr)
2 Q∗Q∗Q∗ ← [d]P∗P∗P∗ ∈ E(Z/prZ) = (xpr, ypr)
3 YYY ← (dt mod r, 1) = (xr, yr)

4

{
cx ← 1 + xpr − xr (mod r)
cy ← ypr (mod r)

4 If (Q∗Q∗Q∗ 6≡ YYY (mod r)) then return error

5 Return Q∗Q∗Q∗ (mod p) ∈ E(Fp)

41 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

New Algorithm

Input: PPP ∈ E , d
Output: QQQ = [d]PPP

1 Choose a small random t

2 Define r← t2 and PPPr ← (t, 1)

3 Compute

1 P∗P∗P∗ ← CRT(PPP,PPPr)
2 Q∗Q∗Q∗ ← [d]P∗P∗P∗ ∈ E(Z/prZ) = (xpr, ypr)
3 YYY ← (dt mod r, 1) = (xr, yr)

4

{
cx ← 1 + xpr − xr (mod r)
cy ← ypr (mod r)

4 For a κ-bit random ρ, compute γ ←
⌊ ρ cx+(2κ−ρ)cy)

2κ
⌋

5 Return QQQ = [γ]Q∗Q∗Q∗ (mod p) ∈ E(Fp)

41 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Outline

1 Elliptic Curves
Basics on elliptic curves
Elliptic curve digital signature algorithm
Other algorithms

2 Attacks
Single-bit errors
Safe errors
Random errors
Skipping attacks

3 Countermeasures
Basic countermeasures
Scalar randomization
BOS+ algorithm
New algorithm

4 Conclusion
Research problems

Summary

Always use ECC standards (ECDSA, ECIES, ECMQV)
Protect private and public parameters

perform memory checks

Protect public routines
Avoid decisional tests and make use of
infective computation
Randomize the implementation
Prefer the splitting methods

42 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Summary

Always use ECC standards (ECDSA, ECIES, ECMQV)
Protect private and public parameters

perform memory checks

Protect public routines
Avoid decisional tests and make use of
infective computation
Randomize the implementation
Prefer the splitting methods

42 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Summary

Always use ECC standards (ECDSA, ECIES, ECMQV)
Protect private and public parameters

perform memory checks

Protect public routines
Avoid decisional tests and make use of
infective computation
Randomize the implementation
Prefer the splitting methods

42 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Summary

Always use ECC standards (ECDSA, ECIES, ECMQV)
Protect private and public parameters

perform memory checks

Protect public routines
Avoid decisional tests and make use of
infective computation
Randomize the implementation
Prefer the splitting methods

42 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Summary

Always use ECC standards (ECDSA, ECIES, ECMQV)
Protect private and public parameters

perform memory checks

Protect public routines
Avoid decisional tests and make use of
infective computation
Randomize the implementation
Prefer the splitting methods

42 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Summary

Always use ECC standards (ECDSA, ECIES, ECMQV)
Protect private and public parameters

perform memory checks

Protect public routines
Avoid decisional tests and make use of
infective computation
Randomize the implementation
Prefer the splitting methods

42 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Attacks

43 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Attacks

Research Problem #1
� Mount fault attacks against randomized implementations of the EC
primitive (e.g., using LLL)

Research Problem #2
� � Mount practical fault-attacks against elliptic curve schemes (i.e.,
beyond the primitive)

Research Problem #3
� Combine classical attacks with fault attacks (i.e., exploit the extra info
provided by the faults)

43 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Attacks

Research Problem #1
� Mount fault attacks against randomized implementations of the EC
primitive (e.g., using LLL)

Research Problem #2
� � Mount practical fault-attacks against elliptic curve schemes (i.e.,
beyond the primitive)

Research Problem #3
� Combine classical attacks with fault attacks (i.e., exploit the extra info
provided by the faults)

43 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Attacks

Research Problem #1
� Mount fault attacks against randomized implementations of the EC
primitive (e.g., using LLL)

Research Problem #2
� � Mount practical fault-attacks against elliptic curve schemes (i.e.,
beyond the primitive)

Research Problem #3
� Combine classical attacks with fault attacks (i.e., exploit the extra info
provided by the faults)

43 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Designs

44 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Designs

Research Problem #1
� Improve the efficiency of computations (speed-wise or memory-wise)
and security — exploit the rich mathematical structure behind elliptic
curves

Research Problem #2
� � Explore scalar multiplication algorithms or design new ones having
invariants (as in Giraud’s proposal)

Research Problem #3
� Develop countermeasures against combined attacks in an efficient way

44 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Designs

Research Problem #1
� Improve the efficiency of computations (speed-wise or memory-wise)
and security — exploit the rich mathematical structure behind elliptic
curves

Research Problem #2
� � Explore scalar multiplication algorithms or design new ones having
invariants (as in Giraud’s proposal)

Research Problem #3
� Develop countermeasures against combined attacks in an efficient way

44 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Further Research: Designs

Research Problem #1
� Improve the efficiency of computations (speed-wise or memory-wise)
and security — exploit the rich mathematical structure behind elliptic
curves

Research Problem #2
� � Explore scalar multiplication algorithms or design new ones having
invariants (as in Giraud’s proposal)

Research Problem #3
� Develop countermeasures against combined attacks in an efficient way

44 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

More Information

45 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

Comments/Questions?

46 / 46 FDTC 2013 · Santa Barbara, August 20, 2013

	Elliptic Curves
	Basics on elliptic curves
	Elliptic curve digital signature algorithm
	Other algorithms

	Attacks
	Single-bit errors
	Safe errors
	Random errors
	Skipping attacks

	Countermeasures
	Basic countermeasures
	Scalar randomization
	BOS+ algorithm
	New algorithm

	Conclusion
	Research problems

