Hardware Trojan Horses in Cryptographic IP Cores

Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Xuan Thuy Ngo and Laurent Sauvage

TELECOM-ParisTech and Secure-IC S.A.S.

August 21, 2013

09:55 - 10:20

Presentation Outline

2 Hardware Trojan Detection

State-of-the-art

3 Layout-GDS II Comparison Technique

ntroduction

Hardware Trojan Detection State-of-the-art Layout-GDS II Comparison Technique Results Conclusion

Presentation Outline

1 Introduction

2 Hardware Trojan Detection

State-of-the-art

* 3 > < 3</p>

3 Layout-GDS II Comparison Technique

Hardware Trojan Introduction

Hardware Trojan (HT) Definition

- Malicious modifications in Integrated Circuits (ICs).
- Realize malicious functions (Leakage of sensible information, alteration of IC behaviours, etc.).
- HT was born because of outsourcing design and fabrication process.

S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, L. Sauvage

ardware Trojan Horses in Cryptographic IP Cores 👘 4 /

4 / 29

Hardware Trojan Structure

Any HT is composed of two main components

- **Trigger**: is the part of HTH used to activate the malicious activity.
- **Payload**: is the part of HTH used to realize/execute the malicious activity.

ntroduction

Hardware Trojan Detection State-of-the-art Layout-GDS II Comparison Technique Results Conclusion

Hardware Trojan Taxonomy

- Classify all type of HT.
- Help to develop suitable detection techniques for each HT type.

S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, L. Sauvage Hardware Trojan Horses in Cryptographic IP Cores 6/29

Presentation Outline

2 Hardware Trojan Detection

State-of-the-art

3 Layout-GDS II Comparison Technique

Hardware Trojan Detection

Classification of HT Detection techniques

- **Destructive reverse engineering**: try to reconstruct netlist and layout of ICs.
- **Invasive methods**: try to (prophylactically) modify the design of IC to prevent the HTH or to assist another detection technique.
- Non-Invasive methods: are done by comparing the performance characteristics of an IC with a known good copy also known as the "golden circuit".

Invasive Methods

- Chakraborty et al. propose a design with two operating modes (Normal and Transparent mode).
- Salmani et al. propose a procedure to insert dummy flip-flops into IC logic.
- Banga et al. propose using QN of D flip-flops.
- Other researchers also suggest logic additions that will make it easier to detect a HTH utilising side-channel analysis.

Non-Invasive Methods (1)

Non-Invasive methods can be done either at **runtime** or in the **testing phase**.

Non-invasive methods on runtime

- Bloom et al. detail a HTH detection approach that uses both hardware and software to detect HTs.
- Abramovici et al. propose real-time security monitors (**DEFENSE**).

Non-Invasive Methods (2)

Non-invasive methods on testing phase

Logic Testing:

- Compare the functionality of the design of the circuit with the implemented circuit.
- Chakraborty et al. suggest to test rare occurrences on an IC rather than testing for correctness.

Side Channel analysis use one or more side-channel parameters to obtain Fingerprint of ICs. We can cite:

- Rad et al. propose using power supply transient signal analysis.
- Banga and Hsiao propose the "sustained vector technique" that is able to magnify the side-channel.

Presentation Outline

1 Introduction

2 Hardware Trojan Detection

State-of-the-art

]]) → ((]]

3 Layout-GDS II Comparison Technique

Introduction

Scenario

- Scenario: Attacker is founder.
- Study Hardware Trojan insertion in GDSII level.
- Impact of the insertion on the IC layout.
- The possibility to detect Hardware Trojan visually?

Hardware Trojan Detection Results

Case Study-AES 128 bits

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Experiment setup

- Vary core utilization rate of AES (50% \rightarrow 99%).
- Vary Hardware Trojan size (1 AND gate ightarrow 128 AND gates).
- Software used: Cadence / Encounter.

Figure: Hardware Trojan with N - 1 AND gates

Presentation Outline

1 Introduction

2 Hardware Trojan Detection

State-of-the-art

3 Layout-GDS II Comparison Technique

Conclusion

AES layouts for 6th metal layer

Figure: 6th metal layer AES layouts (1200 μm \times 1200 μm) with 50% core utilization rate for (a) Original AES, (b) AES with 1 AND gate HTH, (c) AES with 128 AND gate HTH

Conclusion

Cross correlation between original AES layout and affected AES layout

		Hardware Trojan size (Nb of AND gates)								
		1	2	4	8	16	32	64	128	
Core utilization rate	50%	0.9991	0.9972	0.9981	0.9950	0.9933	0.9918	0.9815	0.9668	
	60%	0.9987	0.9968	0.9959	0.9955	0.9944	0.9893	0.9788	0.9670	
	70%	0.9989	0.9981	0.9918	0.9941	0.9881	0.9850	0.9594	0.9067	
	80%	0.9999	0.9965	0.9898	0.9957	0.9780	0.9711	0.8970	0.8509	
	90%	0.9988	0.9990	0.9983	0.9962	0.9832	0.9572	0.8858	0.4010	
	95%	0.9997	0.9984	0.9980	0.9889	0.9589	0.9115	0.8824	0.8202	
	99%	0.9917	0.938	0.9714	0.9527	0.3798	NC	NC	NC	

- In black: ECO route works
- In red: total rerouting
- NC: routing impossible (not placement)

Conclusion

AES layout for all metal layer

Figure: AES layouts (1200 μm \times 1200 μm) with 50% core utilization rate for (a) Original AES, (b) AES with 1 AND gate HTH, (c) AES with 128 AND gate HTH

Conclusion

Cross correlation between original AES layout and affected AES layout

		Hardware Trojan size (Nb of AND gates)								
		1	2	4	8	16	32	64	128	
Core utilization rate	50%	0.9996	0.9788	0.9794	0.9770	0.9766	0.9760	0.9719	0.9874	
	60%	0.9993	0.9975	0.9973	0.9970	0.9964	0.9923	0.9843	0.9783	
	70%	0.9991	0.9987	0.9947	0.9952	0.9924	0.9889	0.9655	0.9272	
	80%	0.9997	0.9976	0.9942	0.9969	0.9868	0.9790	0.9291	0.8915	
	90%	0.9990	0.9988	0.9981	0.9964	0.9878	0.9709	0.9255	0.5162	
	95%	0.9995	0.9978	0.9974	0.9927	0.9742	0.9387	0.9159	0.8661	
	99%	0.994	0.9965	0.9803	0.962	0.4905	NC	NC	NC	

Pixelwise difference of AES layouts

Figure: Pixelwise difference of AES layouts with 50% core utilization rate for Original layout and Infected Layout with (a) 1 AND gate, (b) 128 AND gate.

Introduction Hardware Trojan Detection Layout-GDS II Comparison Technique Results Caretoria

Grid-correlation between layouts

Grid-correlation definition

- Improve Cross correlation coefficients.
- Split images on different pieces
- Compare theses pieces of one with these corresponding pieces of others.
- Reverse Cross correlation coefficients are computed to visual improvement.

Grid-correlation examples

Grid-correlation exemple for CUR of 50% (a, b) and 95% (c, d)

(a)Trojan with 1 AND gate (b) Trojan with 128 AND gates

Conclusion

Experiment on SECMAT circuit

Figure: Cross correlation based comparison between trojaned (*lefthand side*) / genuine (*righthand side*) GDSII and an actual picture, a microscope image of an AES area where the inserted HTH shows up (*center*).

S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, L. Sauvage

rdware Trojan Horses in Cryptographic IP Cores 24 / 29

Presentation Outline

1 Introduction

2 Hardware Trojan Detection

State-of-the-art

3 🕨 🖌 3

3 Layout-GDS II Comparison Technique

Hardware Trojan threat

- Become a serious threat in military, financial fields.
- For now, there is NO technique which can detect all type of Hardware Trojan.

GDSII comparison technique conclusion

- Can detect Hardware Trojan at layout level.
- No need golden model for detection.
- With a CUR superior than 80%, designer can prevent Hardware Trojan insertion.

Future Works

- Improve this technique with minutæ analyses.
- Insertion of Hardware Trojan in processors.
- We wish to collaborate with https://www.trust-hub.org/

Acknowledgements: HOMERE (2011-2013)

- Collaborative project sponsored by the French government:
 - Partners from industry are: Cassidian, Gemalto, Secure-IC,
 - Partners from academia are: ENSMSE, Telecom-ParisTech, CEA LETI, Université de Montpellier,
 - Institutional partner: Agence Nationale de Sécurité des Systèmes d'Information (ANSSI).

(日)

Hardware Trojan Horses in Cryptographic IP Cores

Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, Xuan Thuy Ngo and Laurent Sauvage

TELECOM-ParisTech and Secure-IC S.A.S.

August 21, 2013

09:55 - 10:20

S. Bhasin, J.-L. Danger, S. Guilley, X. T. Ngo, L. Sauvage Hardware Trojan Horses in Cryptographic IP Cores 29/29