Invasive PUF Analysis

Dmitry Nedospasov Clemens Helfmeier Jean-Pierre Seifert Christian Boit Technische Universität Berlin Chair for Security in Telecommunications (SECT) and Chair for Semiconductor Devices (HLB)

Fault Diagnosis and Tolerance in Cryptography

picture by Wikimedia/John L. Wiley http://flickr.com/jw4pix

The SRAM PUF Idea

SRAM PUF – basic idea

SRAM cell logic:

Apply power to SRAM, inverters get compared.

PUF response generated

- noise background makes error correction required
- SRAM is already built-in to most devices

Cloning SRAM PUFs The Clone **29AM Procedure – Episode I**

1. Characterization

2. Manufacturing (HOST 2013)

picture by Wikimedia/Eva Rinaldi

Invasive PUF Analysis

HOST 2013 3 / 22

Cloning SRAM PUFs

Backside FIB trimming

C. Helfmeier et. al., HOST 2013: Cloning Physically Unclonable Functions

Nedospasov, Helfmeier, Seifert, Boit

Invasive PUF Analysis

- 2 Experimental Setup
- The Seebeck Effect on CMOS Devices
- 4 Results on SRAM PUF & Register Logic

5 Impact

- α is the Seebeck coefficient.
- $\blacktriangleright~\alpha_{\rm metal}:~0.001\,{\rm mV}\,{\rm K}^{-1}$ to $0.01\,{\rm mV}\,{\rm K}^{-1}$
- α_{silicon} : $0.2 \,\mathrm{mV} \,\mathrm{K}^{-1}$ to $0.4 \,\mathrm{mV} \,\mathrm{K}^{-1}$

- α is the Seebeck coefficient.
- $\blacktriangleright~\alpha_{\rm metal}:~0.001\,{\rm mV}\,{\rm K}^{-1}$ to $0.01\,{\rm mV}\,{\rm K}^{-1}$
- α_{silicon} : $0.2 \,\mathrm{mV} \,\mathrm{K}^{-1}$ to $0.4 \,\mathrm{mV} \,\mathrm{K}^{-1}$

- α is the Seebeck coefficient.
- $\blacktriangleright~\alpha_{\rm metal}:~0.001\,{\rm mV}\,{\rm K}^{-1}$ to $0.01\,{\rm mV}\,{\rm K}^{-1}$
- α_{silicon} : $0.2 \,\mathrm{mV} \,\mathrm{K}^{-1}$ to $0.4 \,\mathrm{mV} \,\mathrm{K}^{-1}$

- absorption at source and drain significant
- large Seebeck voltage generated only in silicon
- additional voltage generated at illuminated drain contacts

Seebeck Effect on CMOS Gates

Seebeck Effect on CMOS Gates

MOS Transistor Output Characteristic

output voltage

MOS Transistor Output Characteristic

Seebeck Effect on CMOS Gates

MOS Transistor Transfer Characteristic

linear

MOS Transistor Transfer Characteristic

logarithmic linear log. output current log $l_{
m D}$ output current l_{D} $[\mu\mathrm{A}]$ 1 μA 50 25 ΔI "off" $sub-V_{TH}$ operation 0 10 pA 0 V V_{TH} $\frac{1}{2}V_{\rm DD}$ 0 V $V_{\rm TH}$ $\frac{1}{2}V_{\rm DD}$ input voltage U_{GS} input voltage U_{CS}

- stimulation at transistor in on state
- measurement at transistor in off state
- sub- V_{TH} -operation: very low currents need to be measured
- works with all CMOS logic gates though more complex

Results on SRAM PUF & Register Logic **SRAM (PUF) Characterization**

Results on SRAM PUF & Register Logic Increased SRAM size

full image

enlarged section

► ATMega328P SRAM PUF PoC implementation, ≈ 600 nm
 ► ≈ 500 × 8 bit of SRAM, single trace

Results on SRAM PUF & Register Logic Shrinking Technology

full image

enlarged section

- ▶ ATXMega128A1 SRAM PUF PoC implementation, $\approx 300 \, \mathrm{nm}$
- \approx 900 \times 8 bit of SRAM, single trace

Results on SRAM PUF & Register Logic Reading Synthesized Logic

Results on SRAM PUF & Register Logic Reading Synthesized Logic

Impact

Semi-Invasive Memory Reading

- Memory Encryption Decryption (MED) unit of Infineon SLE66PE
- halted by reduced power supply $(0.7 \,\mathrm{V})$
- SRAM retains contents but reset prevents erasure

Impact Clone **CRAR** – **Episode II**

Requirements

- circuit at least partly powered
 - connect device, be careful with light, sensors, etc.
- static, no running clock
 - clock: invasively control, reduce supply voltage, ...
 - reset: prevent data erasure, only required for registers
- Iow and constant current consumption
 - destructively disconnect loads, reduce supply voltage, ...

Benefits

- extract logic state of SRAM and register in single trace
- scalable to huge areas

Summary

Clone **ZRAM** – Episode II

SRAM

- we know whats in there
- PUF: very easy characterization
- Register
 - we can find out what's in there
 - PUF: well ... just as SRAM
 - as part of other type of PUF: better but still vulnerable
- PUFs are only part of the system

Thank you for your attention!

This work has been supported by:

picture by Arne Hückelheim FDTC 2013 21 / 22

Nedospasov, Helfmeier, Seifert, Boit

Invasive PUF Analysis

6T-Cell SRAM Layout

