Protecting Last Four Rounds of CLEFIA is Not Enough Against Differential Fault Analysis

Dr. Sk. Subidh Ali

CRISSPAD New York University Abu Dhabi

Prof. Debdeep Mukhopadhyay

10/11/2013 FDTC2013

Outline

Introduction
CLEFIA
Recent contribution
Basic DFA
DFA on CLEFIA-128
DFA on CLEFIA-192 and CLEFIA-256
Conclusion

- > 128 bit block cipher
- Support three key length: 128, 192, 256 bits
- > 4-way Feistel structure GFN_{4,r}
- > Two F-function with two S-box
- > Number of rounds: 18, 22, 26

ABU DHABI

0

Block Diagram of CLEFIA

Encryption

10/11/2013 FDTC2013

ABU DHABI

Research on DFA on the CLEFIA

- Chen et al.
 - Byte level fault
 - 18 faulty ciphertexts
 - ✓ Fault at 17th, 16th, and 15th round
 - Fukunaga et al.
 - Byte level fault
 - 2 faulty ciphertexts
 - ✓ Fault at 17th round

10/11/2013 FDTC2013

0

- Single byte fault model
- Fault induced before the MDS operation

FDTC2013

- Repeatedly induce faults in (r-1)th round Ffunction.
- Get the input-output difference of rth round
- Get the rth round key
- Do one round decryption and repeat the above steps.

0

Flow of Faults

Use the input-output difference and get the round key

10/11/2013

FDTC2013

0

Flow of Faults

Use the input-output difference and get the round key

0

Protection Against Chen's Attack

If the last two rounds are protected, the attack will fail.

Fukunaga's Attack

Induce two faults in 15th round F-functions.

- 1. Get the input-output difference of 18th round
- 2. Get the 18th round key

Repeat step 1-2 for other round keys.

0

Flow of Faults

0

Protection Against Chen's Attack

If the last four rounds are protected, the attack will fail.

0

Proposed New Attack

A single byte fault spread to 4 bytes at MDS

p'=> {p',8p',2p',*a*p'}

10/11/2013

FDTC2013

0

Fault Analysis

0

- RK_{27} ${p,2p,4p,6p}$ RK_{29} RK_{28} RK_{30} RK_{31} ${p,2p,4p,6p}$ RK_{32} RK_{33} RK_{2} RK_{35} ,2p,4p,6p $-WK_2$ $-WK_3$ $C0_{0}^{*}$ $C0_{1}^{*}$ $C0_{2}^{*}$ $C0_{3}^{*}$
- > For each value of (p,p') we,
 - ✓ Retrieve the values of RK_{34} from the input-output difference of F_0

0

- For each value of (p,p') we,
 - ✓ Retrieve the values of RK₃₄ from the input-output difference of F₀
 - Retrieve the values of RK₃₅ from the input-output difference of F₁

NEW YORK

Ó

- > For each value of (p,p') we,
 - ✓ Retrieve the values of RK_{34} from the input-output difference of F_0
 - ✓ Retrieve the values of RK_{35} from the input-output difference of F₁
 - ✓ Decrypt one round using RK_{34} and RK_{35} ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from
 - F_0

NEW YORK

0

- For each value of (p,p') we,
 - ✓ Retrieve the values of RK_{34} from the input-output difference of F_0
 - ✓ Retrieve the values of RK_{35} from the input-output difference of F₁
 - ✓ Decrypt one round using RK_{34} and RK_{35} ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from
 - F₀
 - ✓ Retrieve the value of $RK_{33} \oplus WK_2$ from F_1

0

 RK_{27}

- For each value of (p,p') we,
 - ✓ Retrieve the values of RK₃₄ from the input-output difference of F₀
 - Retrieve the values of RK₃₅ from the input-output difference of F₁
 - ✓ Decrypt one round using RK_{34} and RK_{35} ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from
 - ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from F_0
 - ✓ Retrieve the value of $RK_{33} \oplus WK_2$ from F₁
 - ✓ Decrypt one more round and retrieve RK₃₀

NEW YORK

Fault Analysis

- For each value of (p,p') we,
 - ✓ Retrieve the values of RK_{34} from the input-output difference of F_0
 - ✓ Retrieve the values of RK₃₅ from the input-output difference of F₁
 - ✓ Decrypt one round using RK_{34} and RK_{35} ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from
 - F
 - ✓ Retrieve the value of $RK_{33} \oplus WK_2$ from F_1
 - ✓ Decrypt one more round and retrieve **RK**₃₀
 - ✓ Retrieve RK₃₁

10/11/2013

Double Swap function

$$\mathsf{RK}_{34}|\mathsf{RK}_{35} = \sum^{8} (\mathsf{L}_{2}|\mathsf{L}_{3}) \oplus (\mathsf{CON}_{58}^{128}|\mathsf{CON}_{59}^{128}) \dots (1)$$

Known

- > For each value of (p,p') we,
 - ✓ Retrieve the values of RK₃₄ from the input-output difference of F₀
 - Retrieve the values of RK₃₅ from the input-output difference of F₁
 - ✓ Decrypt one round using RK_{34} and RK_{35} ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from
 - ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from F_0
 - ✓ Retrieve the value of $RK_{33} \oplus WK_2$ from F₁
 - ✓ Decrypt one more round and retrieve RK₃₀
 - ✓ Retrieve RK₃₁

0

Fault Analysis

Double Swap function

$$\mathsf{RK}_{34}|\mathsf{RK}_{35} = \sum^{8} (\mathsf{L}_{2}|\mathsf{L}_{3}) \oplus (\mathsf{CON}_{58}^{128}|\mathsf{CON}_{59}^{128}) \quad \dots (1)$$

- > For each value of (p,p') we,
 - ✓ Retrieve the values of RK₃₄ from the input-output difference of F₀
 - Retrieve the values of RK₃₅ from the input-output difference of F₁
 - ✓ Decrypt one round using RK_{34} and RK_{35} ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from
 - ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from F_0
 - ✓ Retrieve the value of $RK_{33} \oplus WK_2$ from F₁
 - ✓ Decrypt one more round and retrieve RK₃₀
 - ✓ Retrieve RK₃₁
 - ✓ Retrieve 57 bits of $(K_2|K_3)$ from (RK₃₄|RK₃₅) using inverse of $\sum^8(L)$

10/11/2013

FDTC2013

Fault Analysis

 $(WK_{2}|WK_{3}) = (K_{2}|K_{3})$ $WK_{2} \text{ is known and 25 bits of WK_{3} is known}$ $Get RK_{33} \text{ from } RK_{33} \oplus WK_{2}$ \downarrow $Get last 7 \text{ bits of } WK3 \text{ from } RK_{33}$ $Use RK_{33} \text{ and } RK_{32} \text{ and } get L$

- ➢ For each value of (p,p') we,
 - ✓ Retrieve the values of RK₃₄ from the input-output difference of F₀
 - Retrieve the values of RK₃₅ from the input-output difference of F₁
 - ✓ Decrypt one round using RK_{34} and RK_{35} ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from
 - ✓ Retrieve the value of $RK_{32} \oplus WK_3$ from F_0
 - ✓ Retrieve the value of $RK_{33} \oplus WK_2$ from F₁
 - ✓ Decrypt one more round and retrieve RK₃₀
 - ✓ Retrieve RK₃₁
 - ✓ Retrieve 57 bits of (K₂|K₃) from (RK₃₄|RK₃₅) using inverse of ∑⁸(L)
 - ✓ Get (WK_2 | WK_3) and L

0

Key Recovery

- For each value of (p,p') we get the value of (K₂|K₃) and L
- We do the inverse GFN_{4,12} and get the value of K from L
- If the value of (K₂|K₃) matches with the derived value of K (right half) we accept the key
- > Only one value of K satisfy above condition

Proposed New Attack

Induce two faults in 14th round F-functions.
 For each value of (p,p') do,

- 1. Get the input-output difference of 18th round
- 2. Get the 18th round key
- 3. Repeat step 1-2 for other round keys.
- Get the master key and L from possible round keys.
- From L get the master key:
 - If both the master key matches accept else discard the key.

- The attack will work even if last four rounds are protected.
- > Time complexity of the attack 2^{24}
- Uniquely determines the master key
- Required number of faulty ciphertexts is 2

ABU DHABI

0

Attack on CLEFIA-192 and CLEFIA-256

- In case of CLEFIA-192 and CLEFIA-256 the attack is same.
- Unlike CLEFIA-128 in this case four faults are induced in (r-4)-th round in order to uniquely determine the last four round key.
- Four more faults are induced in two F-functions of (r-8)-th round to recover four more round keys.
- Last eight round keys are sufficient to retrieve the master key.

ABU DHABI

- We propose a attack on CLEFIA by inducing faults one round earlier.
- The attack retrieves the secret key in negligible time.
- The attack emphasize the need for protecting last five round of CLEFIA for non-iterative implementation.

Thank You

Ó