INSPIRING INNOVATION | INNOVANTE PAR TRADITION

www.emse.fr

FDTC 2013

Fault Model Analysis of Laser-Induced Faults in SRAM Memory Cells

Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, Assia Tria Secured Architecture and System Laboratory – Centre Microélectronique de Provence - Gardanne

- Faults are often modeled according two fault models:
 - Bit-set (resp. Bit-reset)
 - Bit-flip
- Not much analysis on the fault model in SRAM:
 - Faults type
 - Effects of the fault injection on the SRAM

alyze the fault model on SRAM memory cell

- Introduction
 - Fault model
 - Fault injection mechanism
 - Sensitivity zones
- Experiments on the SRAM cell
 - Sensitivity map
 - Spice Simulations
- Experiments on microcontroller RAM memory
 - Sensitivity map
- Conclusion & Perspectives

Introduction

www.emse.fr

Bit-set (resp. Bit-reset)

- Its value is changed: '0' => '1'(resp. '1'=>'0')
- Result in a calculation error
- Unfaulted if its value was already '1'(resp. '0')
- Allow to mount safe error attacks

Bit-flip

- Independent of the data value ('0' => '1 or '1' => '0')
- Induces a calculation error
- Better fault injection rate
- Quicker analysis of the faulted results

INSPIRING INNOVATION

Introduction

www.emse.fr

INNOVANTE PAR TRADITION

Fault injection mechanism

- Creation of electron-hole pair along the laser beam due to the photoelectric effect
- Stretch the electric field
- Creation of a transient current
- Possible SEE on PN junction
 - Source and drain of transistors

INSPIRING INNOVATION

Introduction

www.emse.fr

INNOVANTE PAR TRADITION

- Inverter's case:
 - **2**st Case (output = '**0**')
 - PMOS ONF
 - NMOS ORF
 - Only a strike on drain of RMOS will dissolger greet head and and and the ogtep the state put state

The sensitivity zone is the drain of the OFF RMOS transistors

SRAM Memory Cell

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

www.emse.fr

- Configuration SRAM (programmable logic)
 - 5 transistors
- 0.25µm CMOS Technology
- Size: 9µm x 4µm

SRAM Memory Cell

www.emse.fr

SRAM Memory Cell

Sensitivity zones

- Laser spot size of 1µm
 - Sensitivity zones extended
 - Bit-set and Bit-reset zones may overlap
 - For some positions: faults injected should be Bit-flip

Faults Injection

www.emse.fr

INSPIRING INNOVATION | IN

ATION | INNOVANTE PAR TRADITION

Experimental setup

- Front side fault injection
- 1064nm wavelength
- Spot size: 1µm
- Pulse duration: 50 ns
- Energy from 0.26W to 0.42W
- SRAM grid pattern: 0.2µm

Faults Injection

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Sensitivity map of the memory cell

 Red zone and blue zone do not overlap.

www.emse.fr

- No Bit-flip
- Only 3 zones are really sensitive.

 SPICE simulation on the edge zone

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

www.emse.fr

- Based on the model of Sarafianos et al.[1]
 - Model developed with 90nm CMOS technology
 - Using Voltage controlled current source
 - Multiple current sources (several sensitive zones)

[1]Electrical modeling of the photoelectric effect induced by a pulsed laser applied to an NMOS transistor, A. Sarafianos, O. Gagliano, M. Lisart, V. Serradeil, J.M. Dutertre, A. Tria, IRPS 2013

www.emse.fr

First simulation

- Similar to the experiments
- Same hidden zone
- No Bit-flip
- Simulations on the Bit-set position

www.emse.fr

Simulation of Bit-set fault

- Current injected on the drain of MN2
- Current of MP2 in opposition
- State has already changed
- Fault is injected (Bit-set)

www.emse.fr

INSPIRING INNOVATION INNOVANTE PAR TRADITION

Simulation of Bit-reset fault

300

- Current injected in drain of MN1
- Two other current are in opposition
- No fault injected

Ö

INSPIRING INNOVATION

SPICE Simulation

www.emse.fr

INNOVANTE PAR TRADITION

- Experiments were carried out with both Ø 1µm & 5µm
- Power between 0.26W and 0.42W
- Balanced current that avoid fault
- Confirmation of these results with microcontroller RAM memory
 - Several memory cells
 - Different technology
 - SRAM with 6 transistors

www.emse.fr

INSPIRING INNOVATION

INNOVANTE PAR TRADITION

Experimental setup

- 8-bits microcontroller
- CMOS 0.35µm technology
- 4kB divided on 8 parts
 - Each part contains 2 blocks of 256 Bytes
- Zone of 40 x 40 µm² used

www.emse.fr

Experimental setup

- 6 transistors SRAM cell
 - 4 theoretical sensitivity zones
 - 2 Bit-set zones
 - 2 Bit-reset zones
- Spot sizes of 1µm & 5µm
- Power of 0.29W & 0.32W

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Sensitivity map with Ø1µm and 0.29W

- 12 memory cells identified
 - Size approx. 5 x 5 µm²
- No Bit-flip
- Only 2 sensitivity zones
 - 4 theoretical zones

Sensitivity map with Ø5µm and 0.29W

- No memory cells identified
- No Bit-flip
- Spot size has no effect on the injection of Bit-flip fault

Conclusion & Perspectives

• No Bit-flip

www.emse.fr

- Balanced current that avoid fault
- Same behavior with different SRAM cells
- Bit-flip fault model is not the most relevant model
- Allow to mount safe error attack on microcontroller RAM

• Futur works

- Countermeasures will be investigated using the hidden zone
- Laser fault injection with pico-seconds laser pulse

www.emse.fr

INSPIRING INNOVATION | INNOVANTE PAR TRADITION

Thank you for your attention.

Questions?

Acknowledgment: The research work of Cyril Roscian was partly funded by the 'Conseil Régional Provence-Alpes Côte d'Azur'