

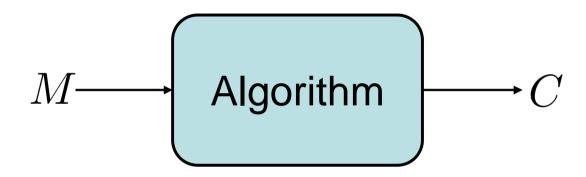
Fault Analysis of Infective AES Computations

Alberto Battistello and Christophe Giraud

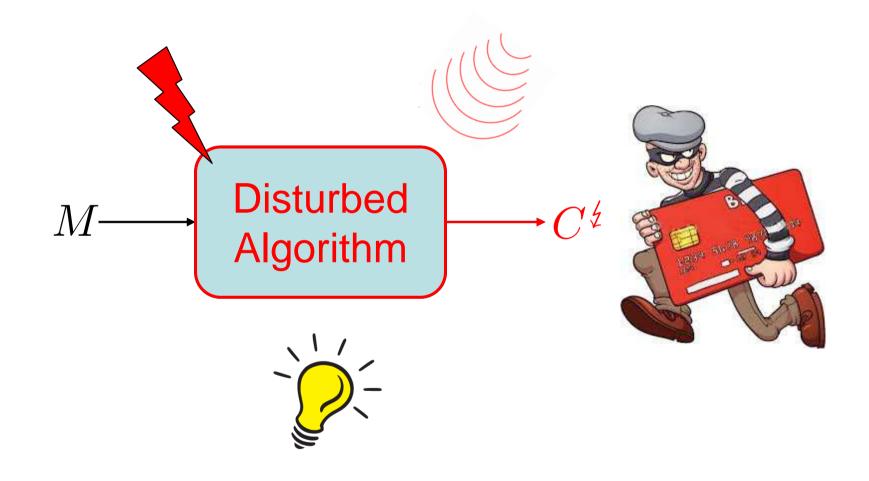
- Introduction
- Attacks
 - FDTC 2012 Countermeasure
 - LatinCrypt 2012 Countermeasure
- Conclusion

- Introduction
- Attacks
 - FDTC 2012 Countermeasure
 - LatinCrypt 2012 Countermeasure
- Conclusion

Fault Attacks

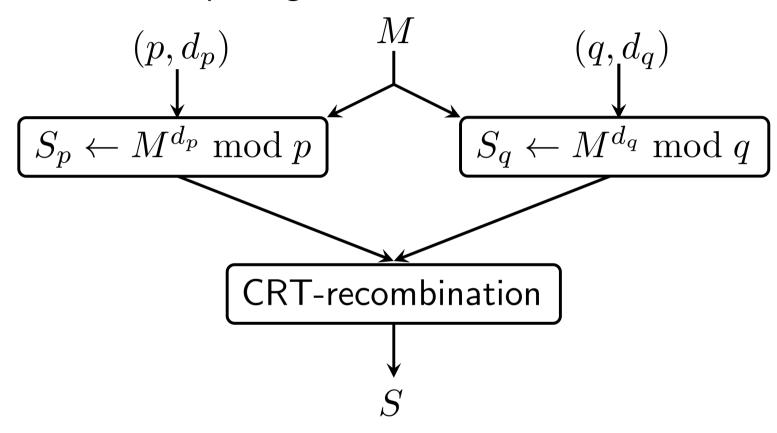


Fault Attacks



An example of Fault Attack

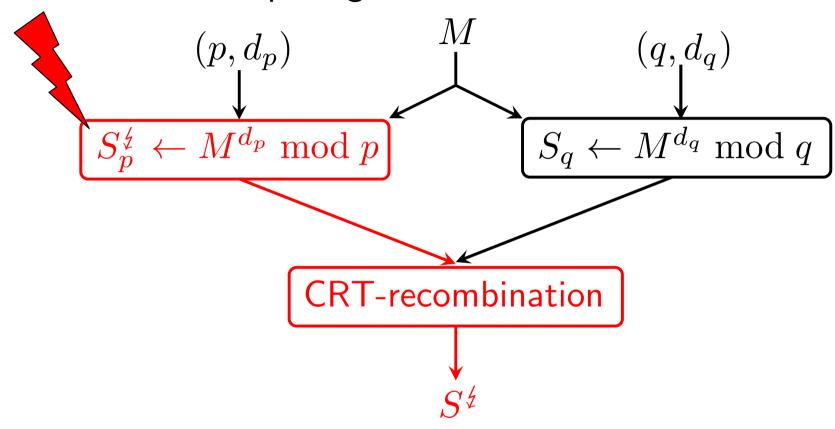
• Instead of computing $S = M^d \bmod N$



$$\begin{cases} S \equiv S_p \bmod p \\ S \equiv S_q \bmod q \end{cases}$$

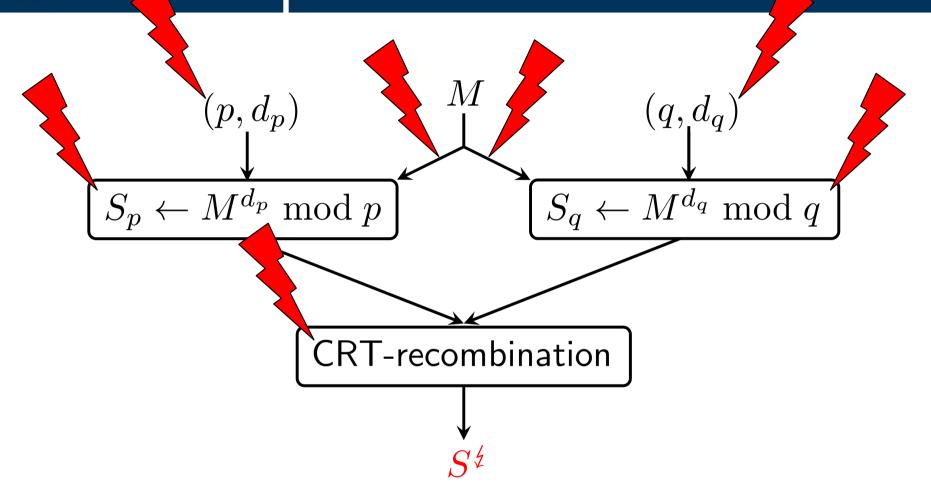
An example of Fault Attack

• Instead of computing $S = M^d \mod N$



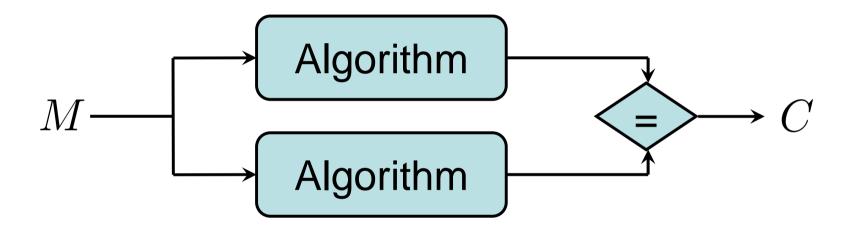
$$\begin{cases} S \equiv S_p \bmod p \\ S \equiv S_q \bmod q \end{cases} \begin{cases} S^{\frac{1}{2}} \not\equiv S_p \bmod p \\ S^{\frac{1}{2}} \equiv S_q \bmod q \end{cases} \Longrightarrow \gcd(S - S^{\frac{1}{2}}, N) = q$$

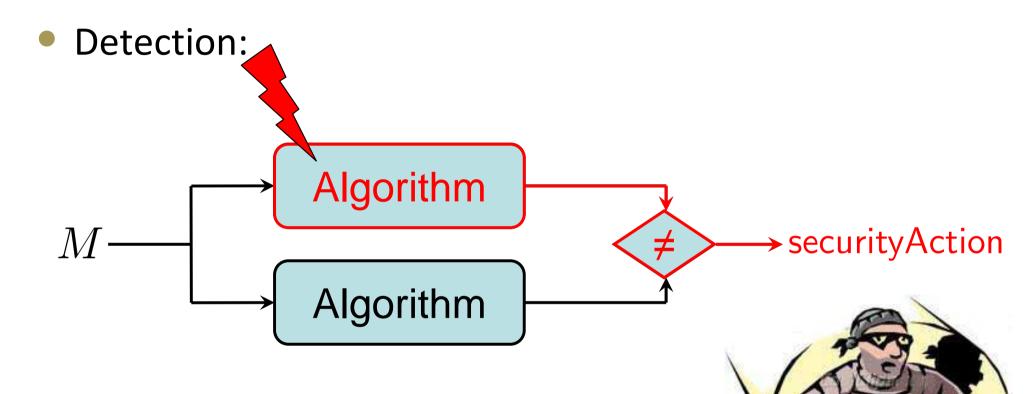
An example of Fault Attack



What a challenge for the countermeasure!!!

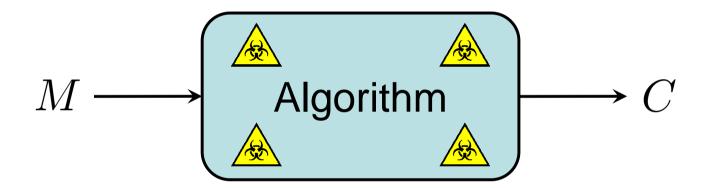
Detection:

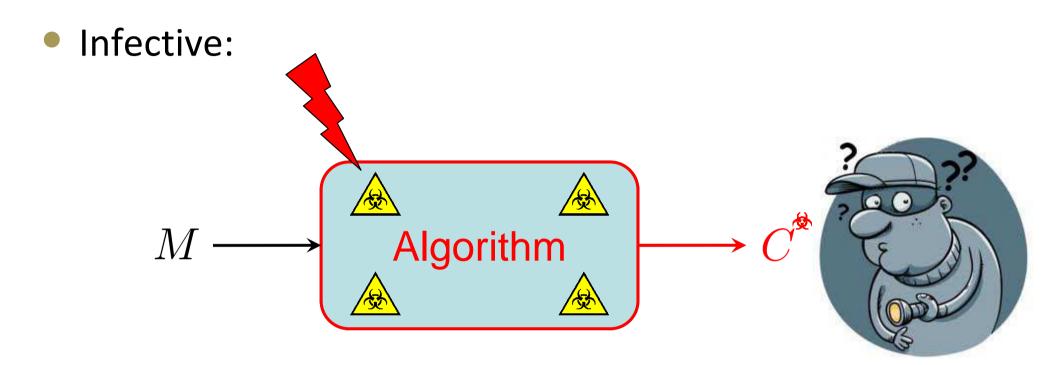




- Drawbacks:
 - Attacks during comparison
 - Different paths to manage

• Infective:





- Comparison with Detection:
 - + No comparison
 - + Single path
 - Could be much slower

Infective Countermeasures History

Asymmetric:

- [Yen, Kim, Lim, Moon] 2001 [Yen, Kim, Moon] 2004
- [Blömer, Otto, Seifert] 2003 [Qin, Li, Kong] 2008
- [Ciet, Joye] 2005 [Berzati, Canovas, Goubin] 2008
- [Schmidt et al.] 2010 → [Feix, Venelli] 2013

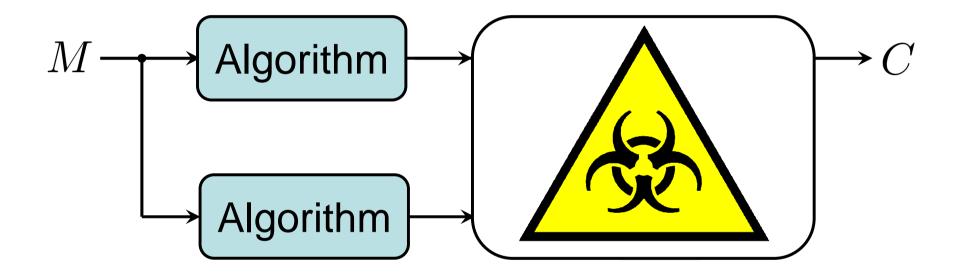
Symmetric:

- [Lomné, Roche, Thillard] 2012
- [Gierlichs, Schmidt, Tunstall] 2012

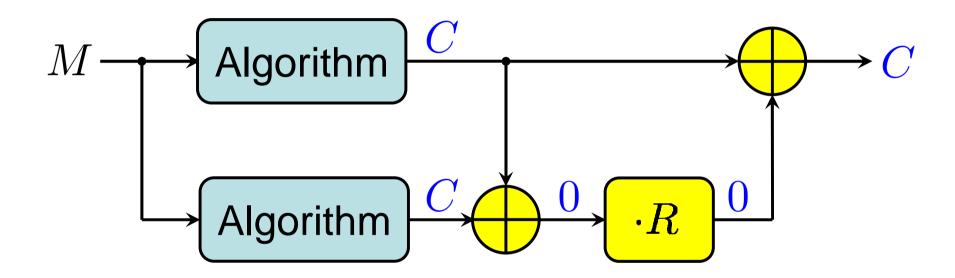
- Introduction
- Attacks
 - FDTC 2012 Countermeasure
 - LatinCrypt 2012 Countermeasure
- Conclusion

© Oberthur Technologies 2013

FDTC 2012 Countermeasure

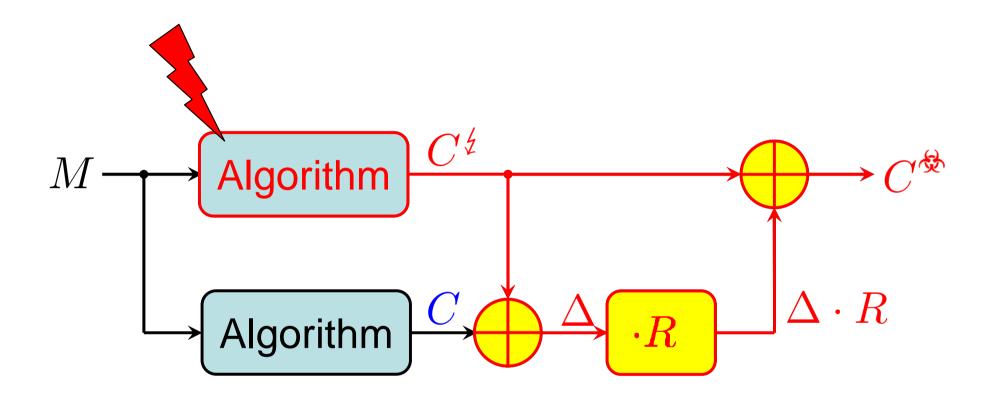


FDTC 2012 Countermeasure



- For efficiency, multiplication is performed byte per byte
- Restriction on the multiplicative mask:
 - ullet R_i must be different from 0 and 1

FDTC 2012 Countermeasure



- For efficiency, multiplication is performed byte per byte
- Restriction on the multiplicative mask:
 - ullet R_i must be different from 0 and 1

FDTC 2012 CM Analysis

AfricaCrypt 2009 : Mukhopadhyay shows that:

 $(C, C^{\frac{1}{2}})$ gives the AES-128 key

if a byte-fault has disturbed the 8th round.

 \Rightarrow Goal for the attacker: Recover $C^{\mbox{\ensuremath{$\psi}}}$ from $C^{\mbox{\ensuremath{$\psi}}}$:

$$C_i^{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensu$$

where $\Delta_i = C_i \oplus C_i^{\mbox{$\!\!\!/$}}$ and R_i a random value $\neq \{0,1\}$.

• Let us assume a constant fault model (i.e. Δ cst):

$$R_i = 2 \qquad C_i^{\diamondsuit} = C_i^{\not z} \oplus 2 \cdot \Delta_i$$

$$R_i = 3$$
 $C_i^{\mbox{\ensuremath{\ensure$

. . .

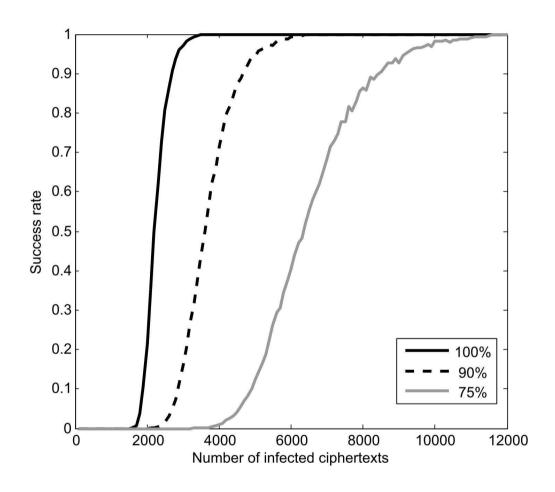
$$R_i = 255$$
 $C_i^{\diamondsuit} = C_i^{\checkmark} \oplus 255 \cdot \Delta_i$

 \Rightarrow 2 values never appear : $C_i^{
subseteq}$ and $C_i^{
subseteq}\oplus\Delta_i=C_i$

FDTC 2012 CM Analysis

- Attack procedure:
 - 1. Inject a constant byte error during round 8 to obtain C^*
 - 2. For each byte i, remove C_i^{\lozenge} from the list of possible values for C_i^{\lozenge}
 - 3. If one $C_i^{\mbox{$\!\!\!\!/$}}$ has more than 2 possible values, then go back to Step 1
 - 4. Identify each $C_i^{\mbox{\em 1}}$ since C_i 's are known
 - 5. Apply Mukhopadhyay's attack to $(C, C^{\frac{1}{2}})$ to recover the secret key

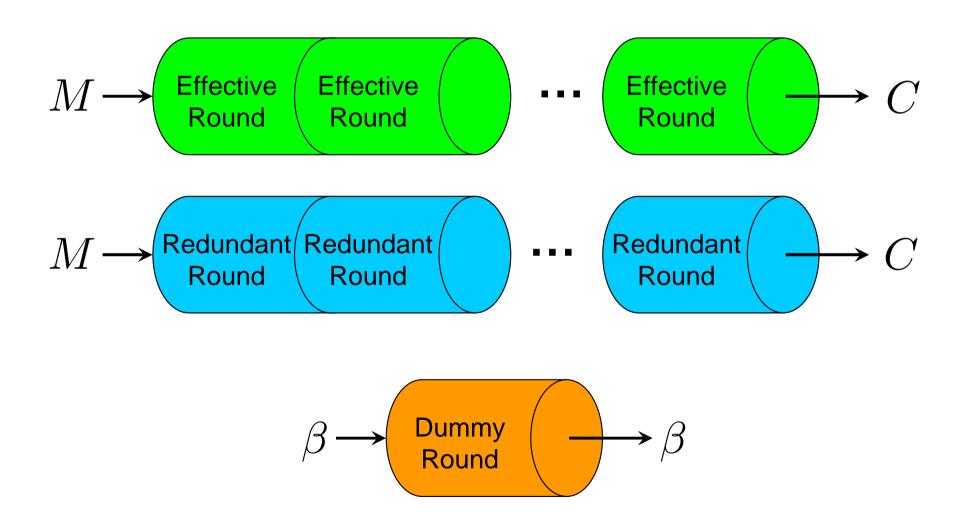
Simulations



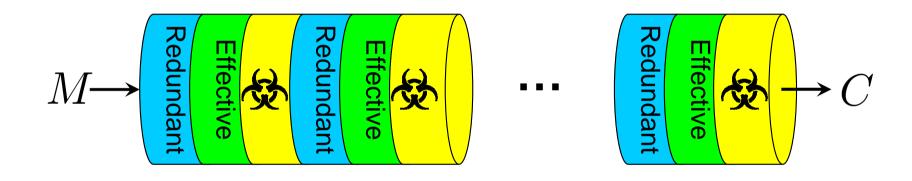
• With $3\,000~\text{C}^{\mbox{\tiny{\$}}}$'s, the AES key is recovered with 99% success rate

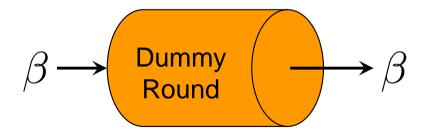
- Introduction
- Attacks
 - FDTC 2012 Countermeasure
 - LatinCrypt 2012 Countermeasure
- Conclusion

LatinCrypt 2012 Countermeasure

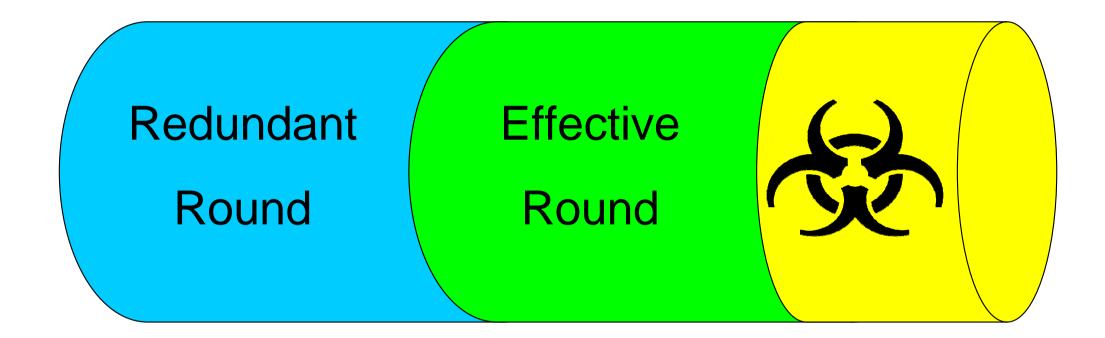


LatinCrypt 2012 Countermeasure

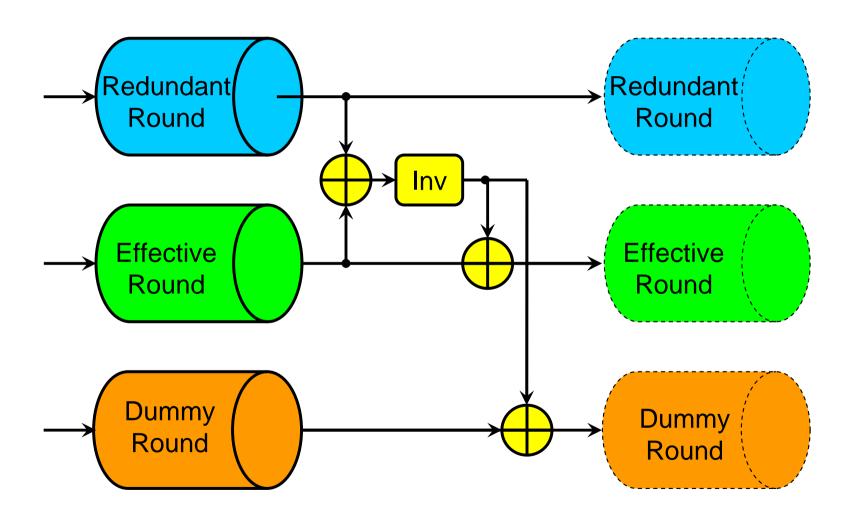




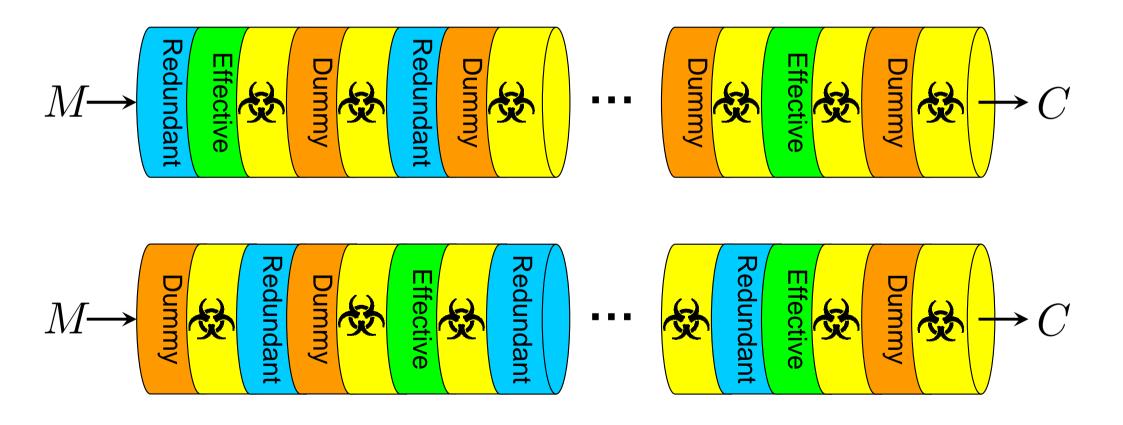
First Infective Mechanism



First Infective Mechanism

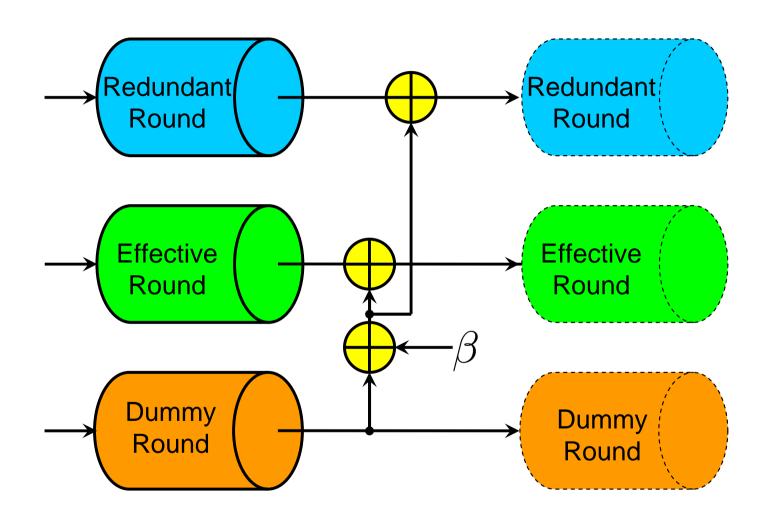


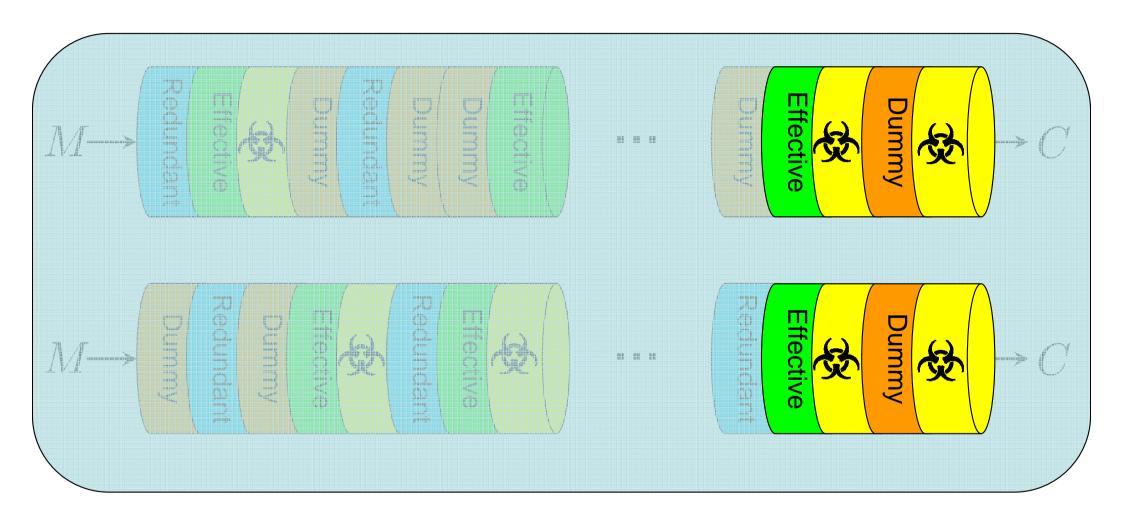
On the Use of Dummy Rounds

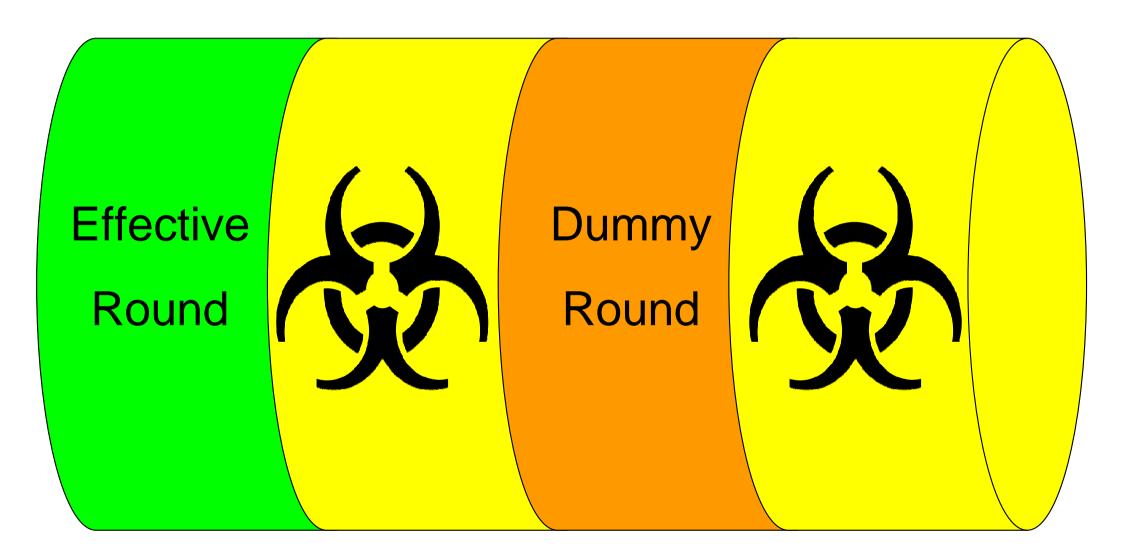


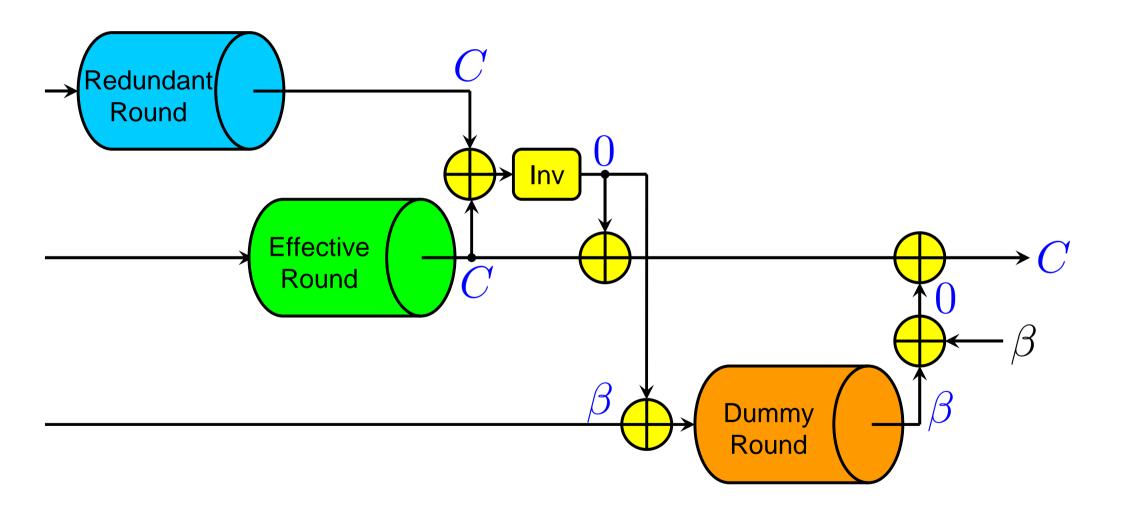
Second Infective Mechanism

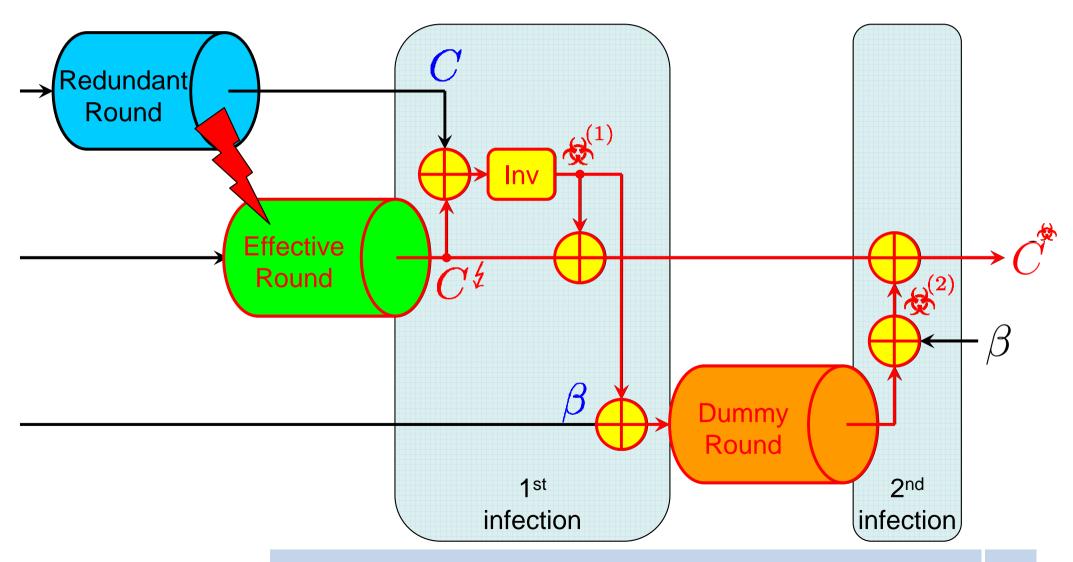
Second Infective Mechanism



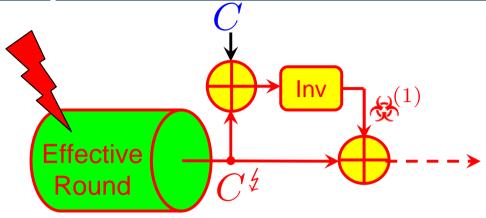








First Infection Analysis



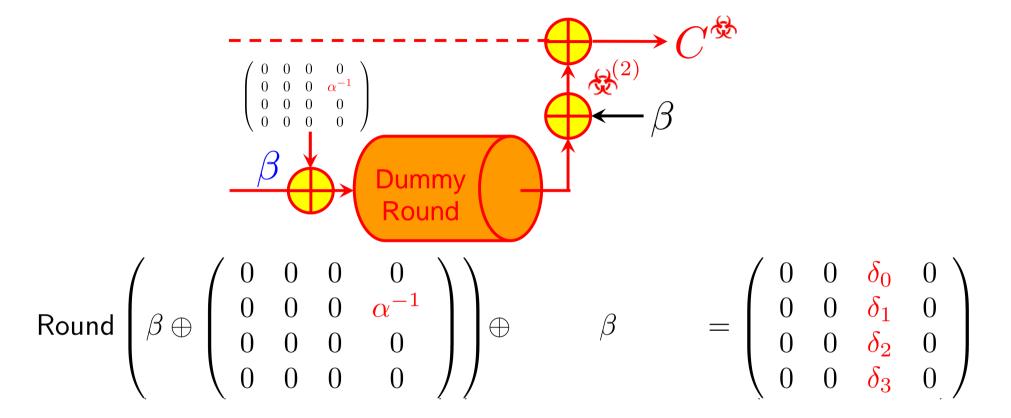
If disturbance of a byte of the input, the differential is:

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
e & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
SubBytes
$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
\alpha & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
ShiftRows
$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

So the first infection is equal to:

$$= \operatorname{Inv}(C \oplus C^{\frac{1}{2}}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \alpha^{-1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Second Infection Analysis



$$= \begin{pmatrix} 0 & 0 & \delta_0 & 0 \\ 0 & 0 & \delta_1 & 0 \\ 0 & 0 & \delta_2 & 0 \\ 0 & 0 & \delta_3 & 0 \end{pmatrix}$$

First + Second Infection

The infected output is defined by:

$$C^{\diamondsuit} = C^{\not =} \oplus {\bigstar}^{(1)} \oplus {\bigstar}^{(2)}$$

Therefore, we have:

$$C^{igotimes} = C^{\fiveredge} egin{pmatrix} 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & \alpha^{-1} \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} \oplus egin{pmatrix} 0 & 0 & \delta_0 & 0 \ 0 & 0 & \delta_1 & 0 \ 0 & 0 & \delta_2 & 0 \ 0 & 0 & \delta_3 & 0 \end{pmatrix}$$

which is equivalent to:

$$C^{igotimes} = C^{lap{1}{2}} \oplus \left(egin{array}{cccc} 0 & 0 & \delta_0 & 0 \ 0 & 0 & \delta_1 & lpha^{-1} \ 0 & 0 & \delta_2 & 0 \ 0 & 0 & \delta_3 & 0 \end{array}
ight)$$

By using:

$$C^{\begin{subarray}{c} C^{\begin{subarray}{c} C^{\begin{subarray}{$$

we obtain:

$$C \oplus C^{\textcircled{2}} = \begin{pmatrix} 0 & 0 & \delta_0 & 0 \\ 0 & 0 & \delta_1 & \alpha \oplus \alpha^{-1} \\ 0 & 0 & \delta_2 & 0 \\ 0 & 0 & \delta_3 & 0 \end{pmatrix}$$

- The byte α contains information on the key but:
 - does not efficiently blind this value
 - $\mathfrak{G}^{(2)}$ has no effect due to ShiftRows transformation

Attack Procedure

To sum up, we have:

$$C_{13} \oplus C_{13}^{\textcircled{6}} = \alpha \oplus \alpha^{-1}$$

with

$$\alpha = \mathsf{SB}(s \oplus e) \oplus \mathsf{SB}(s)$$

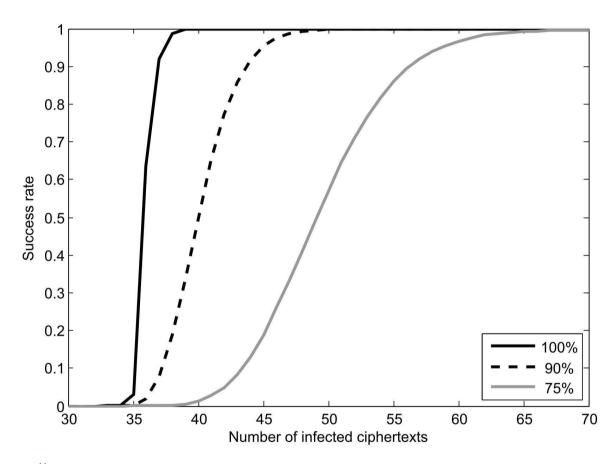
where s is the second input byte of the last effective round.

• The byte s can thus be expressed as:

$$s = \mathsf{SB}^{-1}(C_{13} \oplus k_{13})$$

- The attack process is thus the following:
 - 1. Guess the corresponding key byte $k_h \in \{0, \dots, 255\}$
 - 2. Compute $s_h = \mathsf{SB}^{-1}(C_{13} \oplus k_h)$
 - 3. Guess the error value $e_h \in \{1, \dots, 255\}$
 - 4. Compute $\alpha_h = \mathsf{SB}(s_h \oplus e_h) \oplus \mathsf{SB}(s_h)$
 - 5. If $C_{13} \oplus C_{13}^{\diamondsuit} \neq \alpha_h \oplus \alpha_h^{-1}$ then discard (k_h, e_h)

Simulations



• With $37~C^{*}$'s, the last three rows of the AES key are recovered with 99% success rate

- Introduction
- Attacks
 - FDTC 2012 Countermeasure
 - LatinCrypt 2012 Countermeasure
- Conclusion

© Oberthur Technologies 2013

- The two existing symmetric infective countermeasures are flawed
- Easy to patch but a framework is missing to formally prove countermeasures' security
- After 10 years of research in infective countermeasures, no original proposal has survived...
 - Do infective countermeasures have a future?

Any Questions?