Fault Attacks on AES with Faulty Ciphertexts Only

Thomas FUHR, Eliane JAULMES, Victor LOMNE, Adrian THILLARD

ANSSI (French Network and Information Security Agency)

FDTC 2013, Tuesday, August 20th Santa Barbara, CA

- Embedded Systems integrating Cryptography are susceptible to Physical Attacks
- In this work we consider the security of Block Ciphers (particularly AES) vs Fault Attacks

Differential Fault Attacks

Correct/faulty ciphertexts Statistical treatment Secret key

- Idea: Unable to encrypt twice the same message → no attack!
- Modify protocol:
 - input (M)
 - randomly draw r
 - output $C = (Enc(M \oplus r), r)$
- r renewed at each encryption, preventing differential attacks

Non differential fault attacks

Faulty ciphertexts Statistical treatment Secret key

- $\bullet\,$ If the fault is uniform $\,\Longrightarrow\,$ no attack
- We consider non uniform faults, i.e. faults s.t. the distribution of the faulty value \widetilde{X} is non uniform
- We study different degrees of knowledge/control of the attacker on the distribution of \widetilde{X} :
 - Perfect knowledge
 - Partial knowledge (eg AND with unknown value)
 - No knowledge (except for the non-uniform property)

Sketch of attack on AES: 9-th round

• The fault is injected just after the penultimate AddRoundKey operation on a single byte of the state

 $\ensuremath{\mathsf{Figure}}$: Brown bytes are modified due to the fault. A guess is made on the blue byte.

- For each *C̃_i*, make an hypothesis *k̂* on the secret and compute the corresponding intermediate value X_{i,k̂}
- Distribution of $X_{i,\hat{k}}$ matches our model when \hat{k} is correct.

Sketch of attack on AES: 8-th round

• The fault is injected just after the antepenultimate AddRoundKey operation on a single byte of the state

- For each *C̃_i*, make an hypothesis *k̂* on the secret and compute the corresponding intermediate value X_{i,k̂}
- Distribution of $X_{i,\hat{k}}$ matches our model when \hat{k} is correct. Otherwise uniform

Find the perfect match?

Distinguishers: depending on the knowledge of the fault:

• Maximum likelihood:

$$\prod_{i=1}^n P(\widetilde{X}=X_{i,\hat{k}})$$

• Min/Max mean HW:

$$\frac{1}{n}\sum_{i=1}^{n}HW(X_{i,\hat{k}})$$

• Squared Euclidian Imbalance (SEI):

$$\sum_{\delta=0}^{255} \left(\frac{\#\{i|X_{i,\hat{k}} = \delta\}}{n} - \frac{1}{256} \right)^2$$

To study how well these distinguishers perform, we simulated several fault effects:

- (a) $\widetilde{X} = X$ AND 0 with probability 1
- (b) $\widetilde{X} = X$ AND 0 with probability $\frac{1}{2}$, $\widetilde{X} = X$ AND *e* otherwise
- (c) $\widetilde{X} = X$ AND *e* with *e* uniform

	Max. likelihood	Min. mean HW	SEI
$\widetilde{X} = X$ and 0	1	1	N/A
$\widetilde{X} = X$ AND $\{0, e\}$	10	14	N/A
$\widetilde{X} = X$ AND e	14	18	N/A

Figure : 9-th round: Number of required faults to retrieve (one byte of) K_{10} with a 99% probability. Note that the SEI is useless in this context.

 On the 8-th round: the SEI allows to retrieve (4 bytes!) of K₁₀ using 6, 14 and 80 faulty ciphertexts respectively

• What if both last rounds are duplicated as a countermeasure ?

- Too many bytes of K₁₀ to guess!
- Possible to attack if we strengthen fault models

- The fault is injected between the 7-th MixColumns and the 8-th ShiftRows
- A diagonal of the state is stucked-at an unknown value
- Relevant fault model on 32-bit architecture

- Considering ℓ faults the number of possible hypotheses for 4 bytes of key is $2^{32-8(\ell-1)}$
- 5 faults leave only the correct key
- Computation phase costs $4\ell 2^{32}$
- Complexity : $2^{128-32(\ell-1)} + 4\ell 2^{32}$
- In our paper, we show that it is possible to retrieve the correct key even with failed injections

- The fault is injected between the 6-th MixColumns and the 7-th ShiftRows
- Three diagonals of the state are stucked-at an unknown value

- For each \widetilde{C} we have the values of light red bytes for each key hypothesis on each diagonal $\implies 4 \times 2^{32}$
- Guess which ciphertexts collide ⇒ look for a collision for each diagonal and find the possible keys

- τ collisions amongst ℓ faults
- Complexity: $\binom{\ell}{\tau} 2^{128-32(\ell-1)} + 4\ell 2^{32}$
- High number of faults: with 245 faults, success prob = 54% and around 2^{32} candidates left
- In our paper, we show that it is possible to retrieve the correct key even with failed injections

Conclusion

- Attack without correct ciphertexts/messages based on the non-uniformity of injected faults
- Applicable on the last 4 rounds of AES
- Perspectives
 - Weaken fault models?
 - Improve complexity/decrease number of faults?

$\ddot{\smile}$ Thank you for your attention!

