
Tampering attacks in pairing-based cryptography

Johannes Blömer
University of Paderborn

September 22, 2014

1 / 16



Pairings

Definition 1

A pairing is a bilinear, non-degenerate, and efficiently computable
map e : G×G′ → GT , where G,G′,GT are finite groups of the
same size. Bilinearity:

e(P + Q,R) = e(P,R) · e(Q,R) for all P,Q ∈ G,R ∈ G′

e(P,R + Q) = e(P,R) · e(P,Q) for all P ∈ G,Q,R ∈ G′.

Non-degeneracy: for all P ∈ G \ {O} there is a Q ∈ G′ such that
e(P,Q) 6= 1.

plus crypto assumptions
e(a · P, b · Q) = e(b · P, a · Q) = e(ab · P,Q) = e(P,Q)ab

can be used to combine and recombine shares of secrets
or secrets and nonces

2 / 16



Pairings

Definition 1

A pairing is a bilinear, non-degenerate, and efficiently computable
map e : G×G′ → GT , where G,G′,GT are finite groups of the
same size. Bilinearity:

e(P + Q,R) = e(P,R) · e(Q,R) for all P,Q ∈ G,R ∈ G′

e(P,R + Q) = e(P,R) · e(P,Q) for all P ∈ G,Q,R ∈ G′.

Non-degeneracy: for all P ∈ G \ {O} there is a Q ∈ G′ such that
e(P,Q) 6= 1.

plus crypto assumptions

e(a · P, b · Q) = e(b · P, a · Q) = e(ab · P,Q) = e(P,Q)ab

can be used to combine and recombine shares of secrets
or secrets and nonces

2 / 16



Pairings

Definition 1

A pairing is a bilinear, non-degenerate, and efficiently computable
map e : G×G′ → GT , where G,G′,GT are finite groups of the
same size. Bilinearity:

e(P + Q,R) = e(P,R) · e(Q,R) for all P,Q ∈ G,R ∈ G′

e(P,R + Q) = e(P,R) · e(P,Q) for all P ∈ G,Q,R ∈ G′.

Non-degeneracy: for all P ∈ G \ {O} there is a Q ∈ G′ such that
e(P,Q) 6= 1.

plus crypto assumptions
e(a · P, b · Q) = e(b · P, a · Q) = e(ab · P,Q) = e(P,Q)ab

can be used to combine and recombine shares of secrets
or secrets and nonces

2 / 16



Pairings

Applications

identity-based encryption

attribute-based encryption

group signatures

key agreement

anonymous credentials

...

Attribute-based encryption

encrypt data under
attributes, not for individual
users,

users get rights,

if rights and attributes
match, data can be
decrypted

3 / 16



Pairings

Applications

identity-based encryption

attribute-based encryption

group signatures

key agreement

anonymous credentials

...

Attribute-based encryption

encrypt data under
attributes, not for individual
users,

users get rights,

if rights and attributes
match, data can be
decrypted

3 / 16



Pairings

Applications

identity-based encryption

attribute-based encryption

group signatures

key agreement

anonymous credentials

...

Attribute-based encryption

encrypt data under
attributes, not for individual
users,

users get rights,

if rights and attributes
match, data can be
decrypted

3 / 16



Pairings

Applications

identity-based encryption

attribute-based encryption

group signatures

key agreement

anonymous credentials

...

Attribute-based encryption

encrypt data under
attributes, not for individual
users,

users get rights,

if rights and attributes
match, data can be
decrypted

3 / 16



Pairings

Applications

identity-based encryption

attribute-based encryption

group signatures

key agreement

anonymous credentials

...

Attribute-based encryption

encrypt data under
attributes, not for individual
users,

users get rights,

if rights and attributes
match, data can be
decrypted

3 / 16



Elliptic curves

Elliptic curves

F a field (finite or infinite),
F̄ algebraic closure

a, b ∈ F
E := {(x , y) ∈ F̄2 : y2 =
x3 + ax + b = 0} ∪ {O}
elliptic curve over F
O point at infinity

elliptic curves have group
structure using chord and
tangent law

P

Q

−(P + Q)

P + Q

−2P

2P

4 / 16



Elliptic curves

Elliptic curves

F a field (finite or infinite),
F̄ algebraic closure

a, b ∈ F
E := {(x , y) ∈ F̄2 : y2 =
x3 + ax + b = 0} ∪ {O}
elliptic curve over F
O point at infinity

elliptic curves have group
structure using chord and
tangent law

P

Q

−(P + Q)

P + Q

−2P

2P

4 / 16



Elliptic curves

Elliptic curves

F a field (finite or infinite),
F̄ algebraic closure

a, b ∈ F
E := {(x , y) ∈ F̄2 : y2 =
x3 + ax + b = 0} ∪ {O}
elliptic curve over F
O point at infinity

elliptic curves have group
structure using chord and
tangent law

P

Q

−(P + Q)

P + Q

−2P

2P

4 / 16



Elliptic curves

Elliptic curves

F a field (finite or infinite),
F̄ algebraic closure

a, b ∈ F
E := {(x , y) ∈ F̄2 : y2 =
x3 + ax + b = 0} ∪ {O}
elliptic curve over F
O point at infinity

elliptic curves have group
structure using chord and
tangent law

P

Q

−(P + Q)

P + Q

−2P

2P

4 / 16



Torsion points and embedding degree

Torsion points on elliptic curves

E elliptic curve, P ∈ E , r ∈ N
P torsion point of order r , iff
r · P = O
E [r ] := set of points of order r

E [r ] is subgroup of E

Embedding degree

F = Fq finite field, r ∈ N
smallest k s.th. r | (qk − 1) called
embedding degree

E [r ] ⊂ E (Fqk ) := E ∩ (Fqk × Fqk )

points of
order 2

R

point of
order 4

5 / 16



Torsion points and embedding degree

Torsion points on elliptic curves

E elliptic curve, P ∈ E , r ∈ N
P torsion point of order r , iff
r · P = O
E [r ] := set of points of order r

E [r ] is subgroup of E

Embedding degree

F = Fq finite field, r ∈ N
smallest k s.th. r | (qk − 1) called
embedding degree

E [r ] ⊂ E (Fqk ) := E ∩ (Fqk × Fqk )

points of
order 2

R

point of
order 4

5 / 16



Torsion points and embedding degree

Torsion points on elliptic curves

E elliptic curve, P ∈ E , r ∈ N
P torsion point of order r , iff
r · P = O
E [r ] := set of points of order r

E [r ] is subgroup of E

Embedding degree

F = Fq finite field, r ∈ N
smallest k s.th. r | (qk − 1) called
embedding degree

E [r ] ⊂ E (Fqk ) := E ∩ (Fqk × Fqk )

points of
order 2

R

point of
order 4

5 / 16



Torsion points and embedding degree

Torsion points on elliptic curves

E elliptic curve, P ∈ E , r ∈ N
P torsion point of order r , iff
r · P = O
E [r ] := set of points of order r

E [r ] is subgroup of E

Embedding degree

F = Fq finite field, r ∈ N
smallest k s.th. r | (qk − 1) called
embedding degree

E [r ] ⊂ E (Fqk ) := E ∩ (Fqk × Fqk )

points of
order 2

R

point of
order 4

5 / 16



Torsion points and embedding degree

Torsion points on elliptic curves

E elliptic curve, P ∈ E , r ∈ N
P torsion point of order r , iff
r · P = O
E [r ] := set of points of order r

E [r ] is subgroup of E

Embedding degree

F = Fq finite field, r ∈ N
smallest k s.th. r | (qk − 1) called
embedding degree

E [r ] ⊂ E (Fqk ) := E ∩ (Fqk × Fqk )

points of
order 2

R

point of
order 4

5 / 16



Miller’s algorithm

Miller Algorithm (MA)

input : r ∈ N,P,Q ∈ E ,Q 6= P,O, r =
∑t

j=0 rj2
j , rj ∈ {0, 1}

output: fr ,P (Q)

T ← P

, f ← 1

;
for j = t − 2 . . . 0 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);

T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f ;

lU,V := equation of line through U,V

6 / 16



Miller’s algorithm

Miller Algorithm (MA)

input : r ∈ N,P,Q ∈ E ,Q 6= P,O, r =
∑t

j=0 rj2
j , rj ∈ {0, 1}

output: fr ,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . 0 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f ;

lU,V := equation of line through U,V

6 / 16



The Weil pairing

µr := {u ∈ Fqk : ur = 1} (set of r -th roots of unity)

Definition 2 (Weil/Miller)

The Weil pairing wr is the map defined by

wr : E [r ]× E [r ]→ µr

(P,Q) 7→ (−1)r
fr ,P (Q)

fr ,Q (P)
.

wr is bilinear and non-degenerate,

but rather inefficient, two invocations of MA

7 / 16



The Weil pairing

µr := {u ∈ Fqk : ur = 1} (set of r -th roots of unity)

Definition 2 (Weil/Miller)

The Weil pairing wr is the map defined by

wr : E [r ]× E [r ]→ µr

(P,Q) 7→ (−1)r
fr ,P (Q)

fr ,Q (P)
.

wr is bilinear and non-degenerate,

but rather inefficient, two invocations of MA

7 / 16



The reduced Tate pairing

Definition 3

The reduced Tate pairing tr is the map defined by

tr : E [r ]× E
(
Fqk
) /

rE
(
Fqk
)
→ µr

(P,Q) 7→ fr ,P(Q)(qk−1)/r .

tr requires one MA invocation and one exponentiation, the
final exponentiation (FE)

more efficient to compute than wr

variants of tr lead to pairings currently proposed for
applications

most variants have the structure MA + FE

8 / 16



The reduced Tate pairing

Definition 3

The reduced Tate pairing tr is the map defined by

tr : E [r ]× E
(
Fqk
) /

rE
(
Fqk
)
→ µr

(P,Q) 7→ fr ,P(Q)(qk−1)/r .

tr requires one MA invocation and one exponentiation, the
final exponentiation (FE)

more efficient to compute than wr

variants of tr lead to pairings currently proposed for
applications

most variants have the structure MA + FE

8 / 16



Fault attacks on pairings

most applications don’t
just compute a pairing -
never mind

secret is not the scalar r ,
rather it is P or Q

both MA and FE
individually are usually
hard to invert

FE many-to-one, need to
find the ”right” preimage

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . 0 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

⇒ game is different from standard elliptic curve
cryptography (ECC)

for practical evaluation see Marie’s talk.

9 / 16



Fault attacks on pairings

most applications don’t
just compute a pairing -
never mind

secret is not the scalar r ,
rather it is P or Q

both MA and FE
individually are usually
hard to invert

FE many-to-one, need to
find the ”right” preimage

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . 0 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

⇒ game is different from standard elliptic curve
cryptography (ECC)

for practical evaluation see Marie’s talk.

9 / 16



Fault attacks on pairings

most applications don’t
just compute a pairing -
never mind

secret is not the scalar r ,
rather it is P or Q

both MA and FE
individually are usually
hard to invert

FE many-to-one, need to
find the ”right” preimage

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . 0 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

⇒ game is different from standard elliptic curve
cryptography (ECC)

for practical evaluation see Marie’s talk.

9 / 16



Fault attacks on pairings

most applications don’t
just compute a pairing -
never mind

secret is not the scalar r ,
rather it is P or Q

both MA and FE
individually are usually
hard to invert

FE many-to-one, need to
find the ”right” preimage

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . 0 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

⇒ game is different from standard elliptic curve
cryptography (ECC)

for practical evaluation see Marie’s talk.

9 / 16



Fault attacks on pairings

most applications don’t
just compute a pairing -
never mind

secret is not the scalar r ,
rather it is P or Q

both MA and FE
individually are usually
hard to invert

FE many-to-one, need to
find the ”right” preimage

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . 0 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

⇒ game is different from standard elliptic curve
cryptography (ECC)

for practical evaluation see Marie’s talk.
9 / 16



Attacking a pairing - how to deal with FE

1 Ignore the problem.

2 Show that you can use correlated faults to induce faults in
Miller’s algorithm and skip the final exponentiation.
→ (see Peter’s talk)

3 Assume that you can induce faults into Miller’s algorithm and
additional faults into the final exponentiation that facilitate
the inversion problem for the exponentiation.

4 Use particular curves and pairings for which the inversion
problem for the final exponentiation can be solved efficiently.

10 / 16



The strategies

attack operations in lines
3,4,6,7

lines 4 and 7 seem
difficult
lines 3,6: attack by
Wheelan, Scott and
others

attack loop in lines 2 - 7
(Page-Vercauteren)

leave the loop after
completing a certain
number of iterations
leave the loop within
an iteration and
before executing the
if-instruction in line 5

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)

1 T ← P, f ← 1;
2 for j = t − 2 . . . 0 do
3 f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
4 T ← 2T ;
5 if rj = 1 then
6 f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

7 T ← T + P;

8 return f (q
k−1)/r ;

11 / 16



The strategies

attack operations in lines
3,4,6,7

lines 4 and 7 seem
difficult

lines 3,6: attack by
Wheelan, Scott and
others

attack loop in lines 2 - 7
(Page-Vercauteren)

leave the loop after
completing a certain
number of iterations
leave the loop within
an iteration and
before executing the
if-instruction in line 5

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)

1 T ← P, f ← 1;
2 for j = t − 2 . . . 0 do
3 f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
4 T ← 2T ;
5 if rj = 1 then
6 f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

7 T ← T + P;

8 return f (q
k−1)/r ;

11 / 16



The strategies

attack operations in lines
3,4,6,7

lines 4 and 7 seem
difficult
lines 3,6: attack by
Wheelan, Scott and
others

attack loop in lines 2 - 7
(Page-Vercauteren)

leave the loop after
completing a certain
number of iterations
leave the loop within
an iteration and
before executing the
if-instruction in line 5

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)

1 T ← P, f ← 1;
2 for j = t − 2 . . . 0 do
3 f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
4 T ← 2T ;
5 if rj = 1 then
6 f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

7 T ← T + P;

8 return f (q
k−1)/r ;

11 / 16



The strategies

attack operations in lines
3,4,6,7

lines 4 and 7 seem
difficult
lines 3,6: attack by
Wheelan, Scott and
others

attack loop in lines 2 - 7
(Page-Vercauteren)

leave the loop after
completing a certain
number of iterations
leave the loop within
an iteration and
before executing the
if-instruction in line 5

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)

1 T ← P, f ← 1;
2 for j = t − 2 . . . 0 do
3 f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
4 T ← 2T ;
5 if rj = 1 then
6 f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

7 T ← T + P;

8 return f (q
k−1)/r ;

11 / 16



The strategies

attack operations in lines
3,4,6,7

lines 4 and 7 seem
difficult
lines 3,6: attack by
Wheelan, Scott and
others

attack loop in lines 2 - 7
(Page-Vercauteren)

leave the loop after
completing a certain
number of iterations

leave the loop within
an iteration and
before executing the
if-instruction in line 5

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)

1 T ← P, f ← 1;
2 for j = t − 2 . . . 0 do
3 f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
4 T ← 2T ;
5 if rj = 1 then
6 f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

7 T ← T + P;

8 return f (q
k−1)/r ;

11 / 16



The strategies

attack operations in lines
3,4,6,7

lines 4 and 7 seem
difficult
lines 3,6: attack by
Wheelan, Scott and
others

attack loop in lines 2 - 7
(Page-Vercauteren)

leave the loop after
completing a certain
number of iterations
leave the loop within
an iteration and
before executing the
if-instruction in line 5

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)

1 T ← P, f ← 1;
2 for j = t − 2 . . . 0 do
3 f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
4 T ← 2T ;
5 if rj = 1 then
6 f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

7 T ← T + P;

8 return f (q
k−1)/r ;

11 / 16



Skipping iterations with two independent faults

induce single fault in two
independent runs of
algorithm MA + FE

in first run leave for-loop
after iteration s to obtain
f
(qk−1)/r
s

in first run leave for-loop
after iteration s − 1 to

obtain f
(qk−1)/r
s−1

12 / 16



Skipping iterations with two independent faults

induce single fault in two
independent runs of
algorithm MA + FE

in first run leave for-loop
after iteration s to obtain
f
(qk−1)/r
s

in first run leave for-loop
after iteration s − 1 to

obtain f
(qk−1)/r
s−1

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . s do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

12 / 16



Skipping iterations with two independent faults

induce single fault in two
independent runs of
algorithm MA + FE

in first run leave for-loop
after iteration s to obtain
f
(qk−1)/r
s

in first run leave for-loop
after iteration s − 1 to

obtain f
(qk−1)/r
s−1

MA + FE
input : r ∈ N,P,Q ∈ E
output: fr,P (Q)
T ← P, f ← 1;
for j = t − 2 . . . s − 1 do

f ← f 2 · lT ,T (Q) /l2T ,−2T (Q);
T ← 2T ;
if rj = 1 then

f ← f · lT ,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

12 / 16



Skipping iterations with two independent faults - analysis

P known, Q secret

fs−1
f 2
s

=
lr ′P,r ′P(Q) · l2r ′P,P(Q)rs−1

l2r ′P,−2r ′P(Q) · lr ′′P,−r ′′P(Q)rs−1
low degree function

in coordinates of Q

⇒ determine Q using computer algebra (system)

/ only get
(
fs−1/f 2

s

)(qk−1)/r
(final exponentiation)

similar analysis for other fault attacks

13 / 16



Skipping iterations with two independent faults - analysis

P known, Q secret

fs−1
f 2
s

=
lr ′P,r ′P(Q) · l2r ′P,P(Q)rs−1

l2r ′P,−2r ′P(Q) · lr ′′P,−r ′′P(Q)rs−1
low degree function

in coordinates of Q

⇒ determine Q using computer algebra (system)

/ only get
(
fs−1/f 2

s

)(qk−1)/r
(final exponentiation)

similar analysis for other fault attacks

13 / 16



Skipping iterations with two independent faults - analysis

P known, Q secret

fs−1
f 2
s

=
lr ′P,r ′P(Q) · l2r ′P,P(Q)rs−1

l2r ′P,−2r ′P(Q) · lr ′′P,−r ′′P(Q)rs−1
low degree function

in coordinates of Q

⇒ determine Q using computer algebra (system)

/ only get
(
fs−1/f 2

s

)(qk−1)/r
(final exponentiation)

similar analysis for other fault attacks

13 / 16



Final exponentiation

(qk − 1)/r may be small, i.e. 4

by choice of q,E , r

(qk − 1)/r may be of special structure, that can be exploited

due to optimizations of reduced Tate pairing

final exponentiation can be skipped with correlated fault

exponent can be simplified with correlated fault

⇒ final exponentiation should not be considered a
countermeasure against fault attacks

14 / 16



Final exponentiation

(qk − 1)/r may be small, i.e. 4

by choice of q,E , r

(qk − 1)/r may be of special structure, that can be exploited

due to optimizations of reduced Tate pairing

final exponentiation can be skipped with correlated fault

exponent can be simplified with correlated fault

⇒ final exponentiation should not be considered a
countermeasure against fault attacks

14 / 16



Final exponentiation

(qk − 1)/r may be small, i.e. 4

by choice of q,E , r

(qk − 1)/r may be of special structure, that can be exploited

due to optimizations of reduced Tate pairing

final exponentiation can be skipped with correlated fault

exponent can be simplified with correlated fault

⇒ final exponentiation should not be considered a
countermeasure against fault attacks

14 / 16



Final exponentiation

(qk − 1)/r may be small, i.e. 4

by choice of q,E , r

(qk − 1)/r may be of special structure, that can be exploited

due to optimizations of reduced Tate pairing

final exponentiation can be skipped with correlated fault

exponent can be simplified with correlated fault

⇒ final exponentiation should not be considered a
countermeasure against fault attacks

14 / 16



Conclusion

fault attacks against pairings
possible and realistic (see last two
talks today)

but more complex than in ECC,
both in realization and in analysis

combination of Miller algorithm
and final exponentiation main
difficulty

timing and power analysis
attacks also possible

since points not scalars are the
secrets need to attack
arithmetic/elliptic curve operations

MA + FE
input : r ∈ N, P,Q ∈ E
output: fr,P (Q)

T ← P, f ← 1;
for j = t − 2 . . . s do

f ← f 2 · lT,T (Q) /l2T,−2T (Q);

T ← 2T ;
if rj = 1 then

f ←
f · lT,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

15 / 16



Conclusion

fault attacks against pairings
possible and realistic (see last two
talks today)

but more complex than in ECC,
both in realization and in analysis

combination of Miller algorithm
and final exponentiation main
difficulty

timing and power analysis
attacks also possible

since points not scalars are the
secrets need to attack
arithmetic/elliptic curve operations

MA + FE
input : r ∈ N, P,Q ∈ E
output: fr,P (Q)

T ← P, f ← 1;
for j = t − 2 . . . s do

f ← f 2 · lT,T (Q) /l2T,−2T (Q);

T ← 2T ;
if rj = 1 then

f ←
f · lT,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

15 / 16



Conclusion

fault attacks against pairings
possible and realistic (see last two
talks today)

but more complex than in ECC,
both in realization and in analysis

combination of Miller algorithm
and final exponentiation main
difficulty

timing and power analysis
attacks also possible

since points not scalars are the
secrets need to attack
arithmetic/elliptic curve operations

MA + FE
input : r ∈ N, P,Q ∈ E
output: fr,P (Q)

T ← P, f ← 1;
for j = t − 2 . . . s do

f ← f 2 · lT,T (Q) /l2T,−2T (Q);

T ← 2T ;
if rj = 1 then

f ←
f · lT,P (Q) /lT+P,−(T+P) (Q);

T ← T + P;

return f (q
k−1)/r ;

15 / 16



thank you

Thank you!

16 / 16


