Algebraic Fault Analysis on GOST for
Key Recovery and Reverse Engineering

FDTC 2014
F W Fault Diagnosis and

Tolerance in Cryptography

Xinjie Zhao, Shize Guo, Fan Zhang, Tao Wang, Zhijie Shi, Chujiao Ma and Dawu Gu

The Institute of North Electronic Equipment, Beijing, China
Ordnance Engineering College, Shijiazhuang , China
Zhengjiang University, Hangzhou, China

University of Connecticut, Storrs, USA

Shanghai Jiao Tong University , Shanghai, China

Outline

Motivation? Algebraic Fault Analysis

Target? GOST and Attack Scenarios

Technique? AFA on GOST

Results? Key Recovery and Reverse Engineering

Summary? Conclusion of Our Work

Traditional Fault Analysis

FA (Fault Attack) first proposed by Boneh et al in 1996.

— Received faulty output, guess the fault, find the secret.

 DFA (Differential Fault Analysis) proposed by Biham and
Shamir in 1997.

— Used to break public-key ciphers (ECC), block ciphers (AES, ARIA,
Camellia and CLEFIA) and stream ciphers (RC4, Trivium).

f=T+T*

Encryption C — ¢
FA 3 @)
g
K > K
e " i)
AN

Fault injection) f-'cY:
/> J % b I o <
Ty < P I : C+C* SO0, N3
Encryption -----p c* LS & \ i X
---I;--" """"""""" K=DFA(C, C*,f) \ '

Framework of DFA Manually fault analysis;
Maximal efficiency unknown?

Algebraic Fault Analysis

* AFA (Algebraic Fault Analysis) proposed by Courtois in 2010.
— Algebraic cryptanalysis with fault attack.

Encryption C —

p C=g(P, K)
K
i) | €417 Ko o
olver
Fault injection CH=g(T*, Ky) %
T s IAE.
' Encryption :i- -----)5 Cc* i----} =TT
"""""" X N

Compared with DFA:
» Algebraic analysis are generic and automatic
» Solvers (automatic) allow easier and simpler analysis

» Fault information allows optimization

State-of-the-art AFA

COSADE 2013
Zhang: Piccolo, DES
(10 seconds), MIBS,

single fault

eSmart 2010
Courtois: DES,
single fault, 2173

hours

FDTC 2013
’ & Zhao: LED, single
fault, 1-3 minutes,

COSADE 2011
Mohamed: Trivium,
less faults

evaluating DFA
ePrint 2012/400 < fo";fefe‘;;‘ttﬂ o SR AN
Jovanovic: LED, single A 40: fal(l)lct > SINEIE

fault, 14.67 hours.

Our Motivations?

* Current AFA
— Key recovery when the design of cipher is known

— Evaluating the reduced key search space of DFA

e Our work
— Can AFA work when partial design of cipher is unknown?
— Can AFA be used for reverse engineering besides key recovery?

Outline

Motivation? Algebraic Fault Analysis

Target? GOST and Attack Scenarios

Technique? AFA on GOST

Results? Key Recovery and Reverse Engineering

Summary? Conclusion of Our Work

Overview of GOST

A Soviet and Russian government standard symmetric key
block cipher.

— 64-bit block cipher

— 256 bit keys

— 32 rounds

— Feistel structure

— 8 S-Boxes

— modulo 232 nonlinear part

— Simple key schedule

Overview of GOST

processes the right half of the block using function f, XORs the
result from f with the left half, and swaps the two halves.

key schedule is simple, divide 256-bit key into 8 pieces, using
one piece per round - 2.

S1
S2
S3
S4
S5
S6
S7
S8

the contents of 8 S-Boxes

tttttrtt

[I B

might be secret

Figure 1. One round of GOST

Attack Scenarios

single byte fault injection on the right half of GOST

L R;
E i
* Scenario 1: known complete GOST design, key M :—rf}
recovery? i
» Scenario 2: 8 S-Boxes secret, known secret key, ><
AFA technique, reverse engineering of S-Boxes? ' A

Figure 1. One round of GOST
* Scenario 3: 8 S-Boxes secret, unknown secret key,

AFA technique, both key recovery and reverse
engineering?

Outline

Motivation? Algebraic Fault Analysis

Target? GOST and Attack Scenarios

Techniqgue? AFA on GOST

Results? Key Recovery and Reverse Engineering

Summary? Conclusion of Our Work

AFA on GOST

N pairs of

correct/faulty

encryptions

One correct
encryption

An example: the m-th pair

)

we| T

P X

Cm

_—

Substep 1

(3) Equation solving

Solver

—%

+ Kr f szg(Tm; K1)
Correct GOST Encryption equation set | Kr=h(K) ™
of cipher |~ *=g(T,*, Ky)
(@ Fault injection m_S\vmo T
JER—— f ___________ @ Fault exploitation Substep 2
Byl | il bempl Cp* peeedP equation set ,
R Fmreeen ’ of faults S=TwtTw™ > >
Faulty GOST Encryption
K Substep 3
>_’ C —_—> equation set of '
verification C=E(P,K) 1
Correct GOST Encryption

Figure 2.

» one full correct GOST equation set

Framework of AFA on GOST

» the last few GOST rounds equation set since the fault injections

for N pairs of correct and faulty encryptions

Step 1: GOST Equation Set

* Represent AK (Adding modulo 232)

232 = I32 T Y32

t31 = T32Y32

z31 = 31 + Y31 + 131

t30 = r31Yy31 + w3131 + Y3131
230 = 30 + Y30 + 130

tog = 30y30 + T30t30 + Y3030
229 = T29 + Y29 + t29

tog = r29Yy29 + w29t29 + Y29t29

z9 =12+ Y2 + 12
t1 = woy2 + xata + yoto
z1=r1+y1+ 1

Step 1: GOST Equation Set

Y1 = aj + asxr1 + azro + a4r3 + asra+
. Represent SL (S-Box lookup) ag19 + GrT1 s + agT1Ted
a9roTs + ajproxry + a1 ryrs+
Q19T 1oy + Q13T 1Ty + A4 T1T3T4+
a15r2T3T4 + A16T12T3T4
Y1 = T2 + I3 +I4+ T1T2 + IT1r3+ Yo = ay7 + a18T1 + Q19T + Ax0T3 + A1 T4+
9919 + Q93T 1Ty + Ao T1 T4+
I9r4 + r1Irorq + ror3ry N
Yo =1+ 13+ x4 + T34 + T1TOT3+ (98 T1T9T3 + A9T 1 ToTy + A30T1TT4+
a31rar3Ty + a32T1r2T3T4

T1L2T4 + T1T3TY + T2T3TY Y3 = A33 + A34T1 + Q3579 + A3y + A37T4+

Y3 = I1 + T4 +r1r3 + 14 + 24+ a33T1x2 + a397123 + a40T1 T4+
417923 + Qg9 + A4303T4+
L1524 + L2L3L4 A44T1T973 + A4521T2T4 + Q4612304+
Yy = I+ r3 +Ir1rg + roxry + 34+ (4777374 + A48T1T9T3TY
Y4 = 49 + aspr1 + az1r2 + az2r3 + as3ra+
I1Iror3 + Ir1I3xy (547129 + Q5521 T3 + Az T4+

az7rars + assTror4 + azor3rTs+
AgpT1Toxy + Ag1T1ToT4 + AgaT1 T34+

ag3Tra2r3ry + Ag4T1r2T3T

64 variables a; are

Public S-Box Secret S-Box .
introduced

Step 1: GOST Equation Set

. Represent RL (Rotating bits to left)
Yi = T((i+9) mod 32)+1

. Represent GOST decryption can accelerate speed of AFA)

Algorithm 1. Building the equation set for
r rounds decryption of GOST
I: C +— [(.’1 N &) TR (.’(;.1]
2: Lag +— |e1. 09, ... 39]
3: Rag +— |[cas, c34, ..., Cp4]
L3y <— L33 @® RL(SL(RL(R33,K32)))
R3y +— Ra3
6: for i =31t032—1r (i > 0) do
7 Li — RH—I
8: Ri +— Lit+1® RL(SL(RL(Ri+1.Kj)))
9:end for

Step 2: Fault Equation Set

. Suppose Z denote the injected fault difference

3 Z can be considered as the concatenation of four bytes

Z1||Z2||Z5|| Zy, Zi = (28i-7, Z8i-6,---» 28i) (1 <1 < 4).

3 Four one-bit u; are used to represent whether Z; is faulty (u=0) or not
ui = (1@ zgi—7) A (1B 28i—6) A(...) A (1D 2z3;)
2 Only one byte fault is injected, only one u=0

(1—u)) V(I —uo)V(l—u3)V(l—uy) =1,
uVu; =1, 1<i<j<4

Step 3: Solver

Combine the equation set of GOST with injected fault and use

solver to recover the secret key.
CryptoMiniSAT v2.9.4, support multiple solution output

The PC that runs CryptoMiniSAT has the following
configuration: Intel Core 17-2640M, 2.80 GHZ, and 4G bytes

memory. The operating system is 64-bit Windows 7.

Outline

Motivation? Algebraic Fault Analysis

Target? GOST and Attack Scenarios

Technique? AFA on GOST

Results? Key Recovery and Reverse Engineering

Summary? Conclusion of Our Work

Experiment Parameters

N the number of fault injections

V (N) the number of variables in equation set

A(N) the number of ANF equations in equation set

u(N) the size of the generated scripts

t(N) the time complexity (seconds) required in solver

T threshold of the time complexity (seconds) in a successful AFA

@(N,7) the success rate

A(N) the entropy of the secret key in Scenario 1

Results of Scenario 1

4n random faults are injected into R, i ={24, 26, 28, 30} of
GOST (n faults for each i, N = 4n).

40
35
30
3% 5
$ 2 g
o o
£ B

600 1.200 1,800 2,400 3.000 3,600
solving time (seconds)

600 1200 1800 2400 3000 3600
solving time (seconds) (b) N=8, V(N) = 32,013, A(N) = 63,689, v(N) =
i o o) L 1226KB
(a) N=12, V(N) = 42,857, A(N) = 83,037, v(N) =

1613KB)\(N)=212'2)\(N):216.7

N=8 faults are required to recover the master key, which is less than 64 in [Kim10].

Results of Scenario 2

2n random faults are injected into R;, i ={30, 31} of GOST (n

faults for each i, N = 2n).

s
o

1 —
0} ' 38p
0.8 30
0.7F 325-
e g,
E Uf - 3 &
% 05} £ 151
8 04 2
»
0.3fF
02F = 5 10 15 20 25 30 25 40 45 50 55 @0
a1l] solving time (seconds)
T (b) Solving time (N=64, V(N) = 183,553, A(N) =
%0 44 43 52 58 80 B4 88 72 467,969, v(N) = 9024KB)
Number of fault injections (N)
(a) Success rate (different N) 64 fau'ts to recover the
64-BIT SECRET PARAMETERS FOR THE EIGHT RECOVERED S-BOXES OF GOST (IN HEXADECIMAL) 8 S_Boxes
S-box a,as,.... Q64 S-box ai,as,...,064
S1 0x3e4a983e4b4a3174 S5 0x0ab8873cec12349e
S2 0xf478c97494c208a6 S6 Ox1dceda3679486e34
S3 0x6986bf52669eec3c S7 0xf5c8eb982aead2b2
S4 0x5802b282ac52f22e S8 0x5c4a3b560eba85b6

Results of Scenario 3

9n random faults are injected into R;, i ={23,24,25,26,27,
28,29,30,31} of GOST (n faults for each i, N = 9n).

1 —— 25
oal -
08f L - 20F -
07} |
e
= 06F , o 151 N
@ 05} \] -
o \ <4
S o4t & 1o i
w
03t
02} o
01f f
Q"/ I T % 2 4 & 8 10 12 14 16 18 20 22 24
28 27 28 2 2 < < e
25 26 27 28 29 30 31va3|aeegfn34 35 35 37 38 20 40 solving time (hours)
AT N AT € (b) Solving time (N=270, V(N) = 1,543,797,
(a) Success rate ¢(N,7), N =9n £ LY)

A(N) = 3,974,183, v(N) = 83, TOOKB)

270 faults for the recovery of both of the key and 8 S-Boxes

Outline

Motivation? Algebraic Fault Analysis

Target? GOST and Attack Scenarios

Technique? AFA on GOST

Results? Key Recovery and Reverse Engineering

Summary? Conclusion of Our Work

Conclusion of Our Work

Make a comprehensive study of AFA on GOST

AFA is Efficient: when the whole design of GOST is known, the
key recovery requires only 8 fault injection, less than 64 in
previous DFA work.

AFA is Powerful: can be used for reverse engineering, even
both the key and S-Boxes are secret.

AFA is Automatic: no need to analyze the fault propagation.
AFA is Generic: apply to different attack scenarios.

One lesson: keeping some components in a cipher secret
cannot guarantee its security.

Thanks!
Q&A

Email: zhaoxinjieem@163.com

fanzhang(@zju.edu.cn

