Differential Fault Analysis on the Families of SIMON and SPECK Ciphers

Harshal Tupsamudre, Shikha Bisht, Debdeep Mukhopadhyay (IIT KHARAGPUR)

FDTC 2014

South Korea, Busan

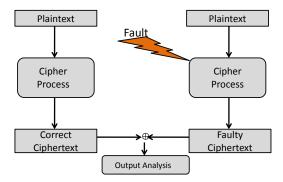
September 23, 2014

A B F A B F

Outline

Preliminaries

Introduction to SIMON and SPECK


Fault Attack On SIMON

- First Attack: A Bit-Flip Fault Attack on SIMON
- A Random-Byte Fault Attack on SIMON

Fault Attack On SPECK A Bit-Flip Fault Attack on SPECK

5 Conclusion

Fault Attack

FDTC 2014 (South Korea, Busan)

Fault Attack

Fault models to model the strength of adversary

- Bit flip Fault Model : Affects a bit of the intermediate result
- Onstant Byte Fault Model : Requires control over fault value and position
- **③** Random Byte Fault Model : No control over fault value and position
- Attacks that require both the correct and faulty ciphertext are known as differential fault attacks

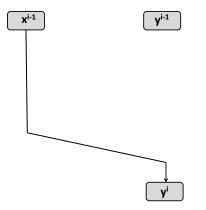
IMON and SPECK : Family of lightweight block ciphers

3

< □ > < ---->

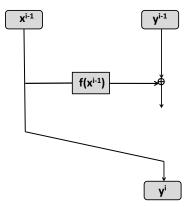

- SIMON and SPECK : Family of lightweight block ciphers
- Proposed by the National Security Agency(NSA) in 2013

- SIMON and SPECK : Family of lightweight block ciphers
- Proposed by the National Security Agency(NSA) in 2013
- O No fault attack reported so far


- **IMON** and SPECK : Family of lightweight block ciphers
- Proposed by the National Security Agency(NSA) in 2013
- No fault attack reported so far
- Fault models used in the attacks: Bit flip and Random byte fault model

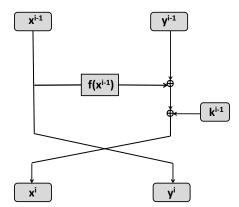
Fault Attack on SIMON

3



イロト イヨト イヨト イヨト

3


< □ > < ---->

3

- ∢ ≣ →

Image: A matrix

$$(x^{i}, y^{i}) = (y^{i-1} \oplus f(x^{i-1}) \oplus k^{i-1}, x^{i-1}), i \in \{1, \dots, T\}$$

3

< □ > < ---->

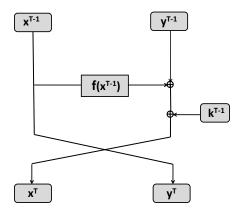
Function f: Source of Information Leakage

$$f(x^{i-1}) = (S^1 x^{i-1} \& S^8 x^{i-1}) \oplus S^2 x^{i-1}$$

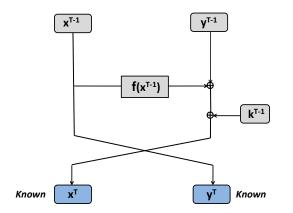
• $S^i x$: Circular left shift of x by i bits

FDTC 2014 (South Korea, Busan)

IIT KHARAGPUR


September 23, 2014 11 / 67

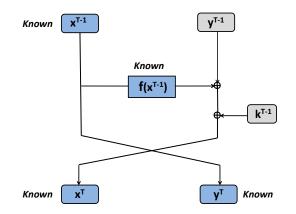
Function f: Source of Information Leakage


$$f(x^{i-1}) = (S^1 x^{i-1} \& S^8 x^{i-1}) \oplus S^2 x^{i-1}$$

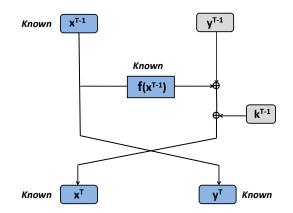
- $S^i x$: Circular left shift of x by i bits
- AND operation: A faulty bit in the input leaks information about the non-faulty bit.

- 一司

< A



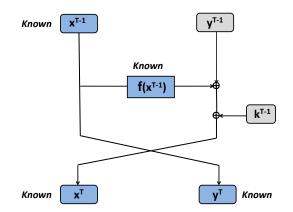
(x^T, y^T) : Ciphertext


FDTC 2014 (South Korea, Busan)

- < ∃ → September 23, 2014 14 / 67

- < A

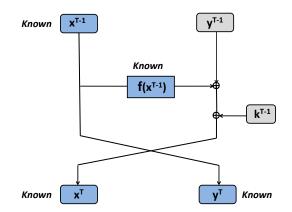
3



$$\because x^{T} = y^{T-1} \oplus f(x^{T-1}) \oplus k^{T-1}$$

FDTC 2014 (South Korea, Busan)

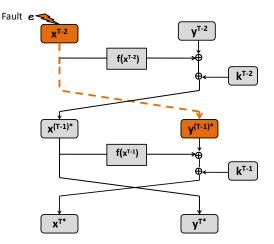
3


< □ > < ---->

$$\because x^{\mathsf{T}} = y^{\mathsf{T}-1} \oplus f(x^{\mathsf{T}-1}) \oplus k^{\mathsf{T}-1} = y^{\mathsf{T}-1} \oplus f(y^{\mathsf{T}}) \oplus k^{\mathsf{T}-1}$$

3

< □ > < ---->



$$\therefore x^{T} = y^{T-1} \oplus f(x^{T-1}) \oplus k^{T-1} = y^{T-1} \oplus f(y^{T}) \oplus k^{T-1}$$

$$\therefore k^{T-1} = y^{T-1} \oplus f(y^{T}) \oplus x^{T}$$

FDTC 2014 (South Korea, Busan) IT KHARAGPUR September 23, 2014 16 / 67

Fault Injection in the Target Round

- 一司

Fault Injection in the Target Round

 (x^{T^*}, y^{T^*}) : Faulty Ciphertext

FDTC 2014 (South Korea, Busan)

글 > - + 글 > September 23, 2014 18 / 67

3

< A

Determining Fault Position and Value

Using Correct Ciphertext:

$$k^{T-1} \oplus y^{T-1} = f(y^T) \oplus x^T$$

$$k^{T-1} \oplus x^{T-2} = f(y^T) \oplus x^T$$
(1)

3

Image: A matrix and a matrix

< 一型

Determining Fault Position and Value

Using Correct Ciphertext:

$$k^{T-1} \oplus y^{T-1} = f(y^T) \oplus x^T$$

$$k^{T-1} \oplus x^{T-2} = f(y^T) \oplus x^T$$
(1)

Using Faulty Ciphertext:

$$k^{T-1} \oplus y^{(T-1)^*} = f(y^{T^*}) \oplus x^{T^*}$$
$$k^{T-1} \oplus x^{T-2} \oplus e = f(y^{T^*}) \oplus x^{T^*}$$

- 一司

3

(2)

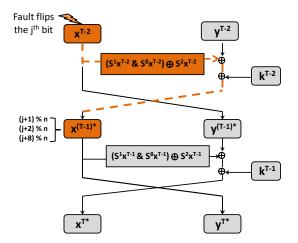
Determining Fault Position and Value

Using Correct Ciphertext:

$$k^{T-1} \oplus y^{T-1} = f(y^T) \oplus x^T$$

$$k^{T-1} \oplus x^{T-2} = f(y^T) \oplus x^T$$
(1)

Using Faulty Ciphertext:

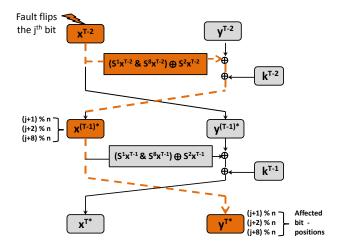

$$k^{T-1} \oplus y^{(T-1)^*} = f(y^{T^*}) \oplus x^{T^*}$$
$$k^{T-1} \oplus x^{T-2} \oplus e = f(y^{T^*}) \oplus x^{T^*}$$

Using (1) and (2):

$$e = x^T \oplus x^{T^*} \oplus f(y^T) \oplus f(y^{T^*})$$

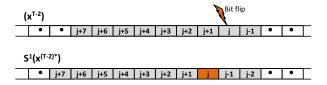
Hence, we know the flipped bit(s) of x^{T-2}

(2)


FDTC 2014 (South Korea, Busan)

IIT KHARAGPUR

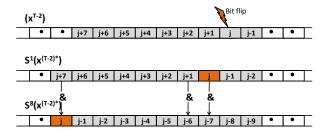
September 23, 2014 20 / 67


3

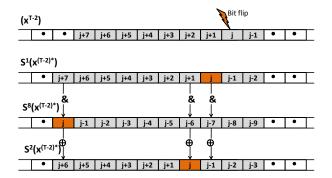
・ロン ・四 ・ ・ ヨン ・ ヨン

3

(日) (同) (三) (三)

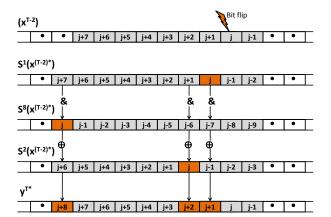


3


- ∢ ≣ →

< □ > < ---->

→


< 一型

FDTC 2014 (South Korea, Busan)

∃ → September 23, 2014 24 / 67

< A

- ∢ 🗇 እ

case 1 :
$$x_{(j-7)\%n}^{T-2} = 0$$

$$y^{T}_{j+1} = (x_{j}^{T-2} \& x_{(j-7)\%n}^{T-2}) \oplus RemainingTerms$$
$$y^{T^{*}}_{j+1} = ((x_{j}^{T-2} \oplus 1) \& x_{(j-7)\%n}^{T-2}) \oplus RemainingTerms$$

x_j^{T-2}	$x_j^{T-2} \oplus 1$	$x_{(j-7)\%n}^{T-2}$	$(y^T \oplus y^{T^*})_{(j+1)\%n}$
0	1	0	0
1	0	0	0

Table: Secret Value $x_{(j-7)\%n}^{T-2}$ obtained from $(y^T \oplus y^{T^*})_{(j+1)\%n}$

FDTC 2014 (South Korea, Busan)

- 3

< ロ > < 同 > < 三 > < 三

case 2 :
$$x_{(j-7)\%n}^{T-2} = 1$$

$$y^{T} = (x_{j}^{T-2} \& x_{(j-7)\%n}^{T-2}) \oplus \text{RemainingTerms}$$
$$y^{T^{*}} = ((x_{j}^{T-2} \oplus 1) \& x_{(j-7)\%n}^{T-2}) \oplus \text{RemainingTerms}$$

x_j^{T-2}	$x_j^{T-2} \oplus 1$	$x_{(j-7)\%n}^{T-2}$	$(y^T \oplus y^{T^*})_{(j+1)\%n}$
0	1	1	1
1	0	1	1

Table: Secret Value $x_{(j-7)\%n}^{T-2}$ obtained from $(y^T \oplus y^{T^*})_{(j+1)\%n}$

FDTC 2014 (South Korea, Busan)

イロト 不得下 イヨト イヨト 二日

$$k_{j-7}^{T-1} = y_{j-7}^{T-1} \oplus f(y^T)_{j-7} \oplus x_{j-7}^T$$

$$k_{j+7}^{T-1} = y_{j+7}^{T-1} \oplus f(y^T)_{j+7} \oplus x_{j+7}^T$$

Using a single bit-flip, we can retrieve two bits of last round key.

Simulation Results

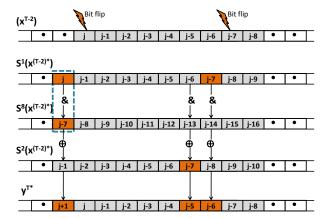

n bits	k^{T-1}	Avg. No. of Faulty Encryptions
16	0xfa 0x24	25
24	0x26 0x53 0xaf	43
32	0x87 0x46 0x09 0x1a	62
48	0x22 0x4d 0xe9 0xcf 0x51 0xdd	104
64	0x19 0x26 0x5a 0xc7 0x4f 0xf2 0x90 0x01	150

Table: Bit-flip Fault Attack on SIMON Assuming no Control Over the Fault Position

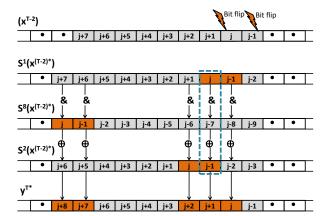
3 1 4

- 一司

3

3

- (A 🖓


$$y^{T} = (x_{j}^{T-2} \& x_{(j-7)\%n}^{T-2}) \oplus RemainingTerms$$

 $y^{T^{*}} = ((x_{j}^{T-2} \oplus 1) \& (x_{(j-7)\%n}^{T-2} \oplus 1)) \oplus RemainingTerms$

x_j^{T-2}	$x_j^{T-2} \oplus 1$	$x_{(j-7)\%n}^{T-2}$	$x_{(j-7)\%n}^{\mathcal{T}-2} \oplus 1$	$(y^T \oplus y^{T^*})_{(j+1)\% n}$
0	1	1	0	0
1	0	0	1	0
0	1	0	1	1
1	0	1	0	1

Table: Relation between the Secret Values $x_{(j)\%n}^{T-2}$ and $x_{(j-7)\%n}^{T-2}$

< ∃ > <

Image: Image:

3

Image: Image:

$$y^{T} = (x_{j}^{T-2} \& x_{(j-7)\%n}^{T-2}) \oplus RemainingTerms$$

 $y^{T^{*}} = ((x_{j}^{T-2} \oplus 1) \& x_{(j-7)\%n}^{T-2}) \oplus 1 \oplus RemainingTerms$

x_j^{T-2}	$x_j^{T-2} \oplus 1$	$x_{(j-7)\%n}^{T-2}$	$(y^T \oplus y^{T^*})_{(j+1)\% n}$
0	1	0	1
1	0	0	1
0	1	1	0
1	0	1	0

Table: Secret Value $x_{(j-7)\%n}^{T-2}$ obtained from $(y^T \oplus y^{T^*})_{(j+1)\%n}$

FDTC 2014 (South Korea, Busan)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• If the least and most significant bits of the byte fault having Hamming weight z are 1, then 2z - 2 key bits are retrieved. There are 64 such faults.

- If the least and most significant bits of the byte fault having Hamming weight z are 1, then 2z 2 key bits are retrieved. There are 64 such faults.
- Otherwise a byte fault of Hamming weight z in x^{T-2} retrieves 2z bits of the last round key k^{T-1} . The number of possible byte faults having Hamming weight z is $\binom{8}{z}$.

- If the least and most significant bits of the byte fault having Hamming weight z are 1, then 2z - 2 key bits are retrieved. There are 64 such faults.
- Otherwise a byte fault of Hamming weight z in x^{T-2} retrieves 2z bits of the last round key k^{T-1} . The number of possible byte faults having Hamming weight z is $\binom{8}{z}$.
- Therefore, the expected number of key bits that can be retrieved by a random byte fault is:

$$\frac{1}{255} * \left(\left(\sum_{z=1}^{8} 2z * \binom{8}{z} \right) - 128 \right) \approx 8$$

- If the least and most significant bits of the byte fault having Hamming weight z are 1, then 2z - 2 key bits are retrieved. There are 64 such faults.
- Otherwise a byte fault of Hamming weight z in x^{T-2} retrieves 2z bits of the last round key k^{T-1} . The number of possible byte faults having Hamming weight z is $\binom{8}{z}$.
- Therefore, the expected number of key bits that can be retrieved by a random byte fault is:

$$\frac{1}{255} * \left(\left(\sum_{z=1}^{8} 2z * \binom{8}{z} \right) - 128 \right) \approx 8$$

• Hence (n/8) byte faults required to recover n bit secret key

Simulation Results

n bits	k^{T-1}	Avg. No. of Faulty Encryptions
16	0xfa 0x24	6
24	0x26 0x53 0xaf	9
32	0x87 0x46 0x09 0x1a	13
48	0x22 0x4d 0xe9 0xcf 0x51 0xdd	21
64	0x19 0x26 0x5a 0xc7 0x4f 0xf2 0x90 0x01	30

Table: Random Byte Fault Attack on SIMON Assuming no Control Over the Fault Position

3 1 4

- 一司

3

Fault Attack on SPECK

FDTC 2014 (South Korea, Busan)

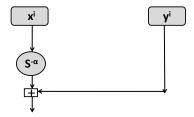
< E September 23, 2014 36 / 67

-

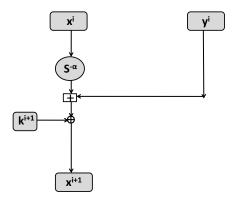
- < A

3

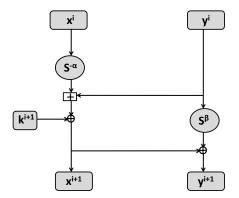
3


A B F A B F

$S^{-\alpha}x$: Circular right shift of x by α bits


FDTC 2014 (South Korea, Busan)

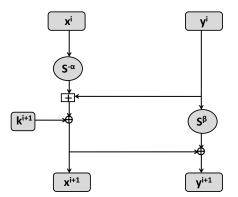
3


3

I ≡ ►

3

◆ □ ▶ ◆ 🗇


$$S^{\beta}y$$
: Circular left shift of y by β bits

FDTC 2014 (South Korea, Busan)

3

A B F A B F

Image: A matrix



$$(x^{i+1}, y^{i+1}) = ((S^{-\alpha}x^i + y^i) \oplus k^{i+1}, S^{\beta}y^i \oplus x^{i+1}), i \in \{0, \dots, T-1\}$$

3

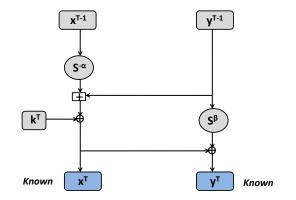
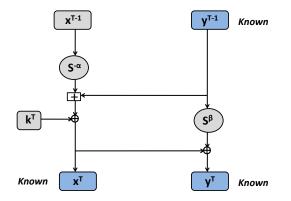

A B F A B F

Image: A matrix

3

・ロン ・四 ・ ・ ヨン ・ ヨン

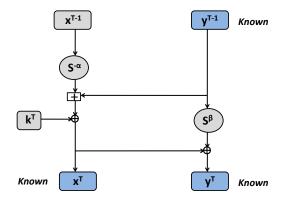

(x^T, y^T) : Correct Ciphertext

FDTC 2014 (South Korea, Busan)

 → September 23, 2014 44 / 67

-

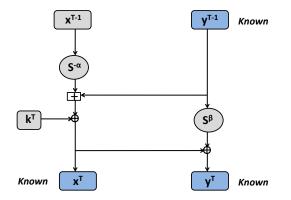
3



$$y^{T-1} = x^T \oplus S^{-\beta}(y^T)$$

FDTC 2014 (South Korea, Busan)

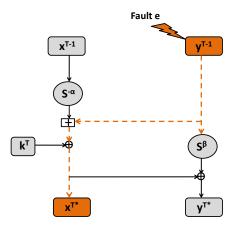
< □ > < ---->


3

$$k^{\mathsf{T}} = (S^{-\alpha}x^{\mathsf{T}-1} + S^{-\beta}(y^{\mathsf{T}} \oplus x^{\mathsf{T}})) \oplus x^{\mathsf{T}}$$

FDTC 2014 (South Korea, Busan)

æ


$$k_j^{\mathsf{T}} = (x_{j+lpha}^{\mathsf{T}-1} \oplus (y^{\mathsf{T}} \oplus x^{\mathsf{T}})_j \oplus c_j) \oplus x_j^{\mathsf{T}}$$

3

ヨト・イヨト

Image: A matrix

Fault Injection in the Target Round

(x^{T^*}, y^{T^*}) : Faulty Ciphertext

FDTC 2014 (South Korea, Busan)

- 一司

Determining Fault Position and Value

Using Correct Ciphertext:

$$y^{T-1} = S^{-\beta}(y^T \oplus x^T)$$
(3)

3

→

< A

Determining Fault Position and Value

Using Correct Ciphertext:

$$y^{T-1} = S^{-\beta}(y^T \oplus x^T) \tag{3}$$

Using Faulty Ciphertext:

$$y^{(T-1)^{*}} = S^{-\beta}(y^{T^{*}} \oplus x^{T^{*}})$$

$$y^{(T-1)} \oplus e = S^{-\beta}(y^{T^{*}} \oplus x^{T^{*}})$$
 (4)

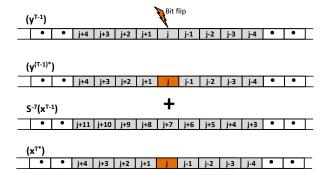
3

Determining Fault Position and Value

Using Correct Ciphertext:

$$y^{T-1} = S^{-\beta}(y^T \oplus x^T) \tag{3}$$

Using Faulty Ciphertext:


$$y^{(T-1)^{*}} = S^{-\beta}(y^{T^{*}} \oplus x^{T^{*}})$$

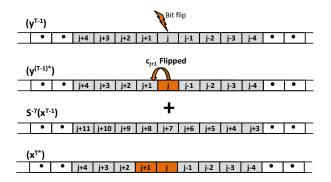
$$y^{(T-1)} \oplus e = S^{-\beta}(y^{T^{*}} \oplus x^{T^{*}})$$
 (4)

Using (3) and (4):

$$e = S^{-\beta}(y^T \oplus y^{T^*} \oplus x^T \oplus x^{T^*})$$

Hence, we know the flipped bit(s) of y^{T-1}

FDTC 2014 (South Korea, Busan)

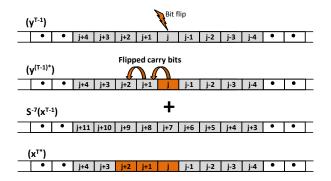


FDTC 2014 (South Korea, Busan)

3

- 4 ≣ ▶

- ∢ ⊢⊒ →

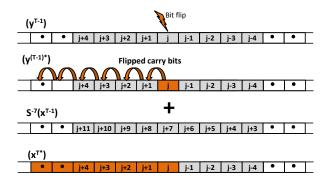


FDTC 2014 (South Korea, Busan)

3

< 17 ▶

- A 🖃


FDTC 2014 (South Korea, Busan)

- ∢ ≣ → September 23, 2014 52 / 67

3

< 🗇 🕨

- - E

FDTC 2014 (South Korea, Busan)

- < ∃ → September 23, 2014 53 / 67

- ∢ ⊢⊒ →

3

case 1 : $x_{j+\alpha} = c_j$

Cj	0	0
$x_{j+\alpha}$	0	0
Уј	0	1
$c_j + x_{j+\alpha} + y_j$	00	01

Table: Determining value of $x_{j+\alpha}$

- 3

case 1 : $x_{j+\alpha} = c_j$

Cj	1	1
x_{j+lpha}	1	1
Уј	0	1
$c_j + x_{j+\alpha} + y_j$	10	11

Table: Determining value of $x_{j+\alpha}$

- 3

case 1 : $x_{j+\alpha} = c_j$

Сј	0	0	1	1
x _{j+α}	0	0	1	1
Уј	0	1	0	1
$c_j + x_{j+\alpha} + y_j$	00	01	10	11

Table: Determining value of $x_{j+\alpha}$

- 3

case 2 : $x_{j+\alpha} \neq c_j$

Cj	1	1
x_{j+lpha}	0	0
Уј	0	1
$c_j + x_{j+\alpha} + y_j$	01	10

Table: Determining value of $x_{j+\alpha}$

FDTC 2014 (South Korea, Busan)

IIT KHARAGPUR

September 23, 2014 57 / 67

- 3

case 2 : $x_{j+\alpha} \neq c_j$

Cj	0	0
x _{j+α}	1	1
Уј	0	1
$c_j + x_{j+\alpha} + y_j$	01	10

Table: Determining value of $x_{j+\alpha}$

FDTC 2014 (South Korea, Busan)

IIT KHARAGPUR

September 23, 2014 58 / 67

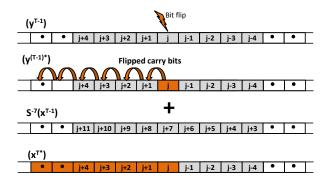
3

- ∢ ศ⊒ ▶

A Bit-Flip Fault Attack on SPECK

$\mathsf{case}\ 2:\ x_{j+\alpha}\ \neq\ c_j$

Cj	1	1	0	0
$x_{j+\alpha}$	0	0	1	1
Уј	0	1	0	1
$c_j + x_{j+\alpha} + y_j$	01	10	01	10

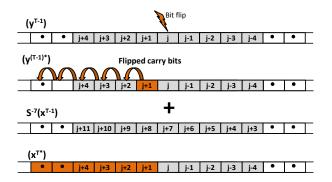

Table: Determining value of $x_{j+\alpha}$

FDTC 2014 (South Korea, Busan)

3

- ∢ ศ⊒ ▶

A Bit-Flip Fault Attack on SPECK


FDTC 2014 (South Korea, Busan)

- < ∃ → September 23, 2014 60 / 67

- ∢ ⊢⊒ →

3

A Bit-Flip Fault Attack on SPECK

FDTC 2014 (South Korea, Busan)

- ∢ ⊢⊒ →

3

FDTC 2014 (South Korea, Busan)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• The probability of obtaining *I* more bits of x^{T-1} is equal to the probability of *I* carry bits getting flipped due to a single bit flip in y^{T-1} .

Image: Image:

3

- The probability of obtaining *I* more bits of x^{T-1} is equal to the probability of *I* carry bits getting flipped due to a single bit flip in y^{T-1} .
- For l^{th} carry bit to be flipped all the lower (l-1) carry bits should also be flipped. The probability of this event is $1/2^{l}$.

- The probability of obtaining / more bits of x^{T-1} is equal to the probability of / carry bits getting flipped due to a single bit flip in y^{T-1} .
- For l^{th} carry bit to be flipped all the lower (l-1) carry bits should also be flipped. The probability of this event is $1/2^{l}$.
- Therefore the expected number of bits of last round key that can be retrieved using a single bit-flip is:

$$1 + \sum_{t=1}^{l} t * \Pr[t] = 1 + \sum_{t=1}^{l} t * \frac{1}{2^{t}} \approx 3$$

- The probability of obtaining *I* more bits of x^{T-1} is equal to the probability of *I* carry bits getting flipped due to a single bit flip in y^{T-1} .
- For l^{th} carry bit to be flipped all the lower (l-1) carry bits should also be flipped. The probability of this event is $1/2^{l}$.
- Therefore the expected number of bits of last round key that can be retrieved using a single bit-flip is:

$$1 + \sum_{t=1}^{l} t * \Pr[t] = 1 + \sum_{t=1}^{l} t * \frac{1}{2^{t}} \approx 3$$

• Hence the number of bit faults required to recover all the *n* bits of last round key k^T is (n/3).

Simulation Results

n bits	k^{T-1}	Avg. No. of Faulty Encryptions
16	0xfa 0x24	18
24	0x26 0x53 0xaf	25
32	0x87 0x46 0x09 0x1a	44
48	0x22 0x4d 0xe9 0xcf 0x51 0xdd	85
64	0x19 0x26 0x5a 0xc7 0x4f 0xf2 0x90 0x01	114

Table: Bit-flip Fault Attack on SPECK Assuming no Control Over the Fault Position

3

• = • •

- 一司

Conclusion & Summary

 Fault Attack Susceptibility: Latest ciphers such as SIMON and SPECK vulnerable to fault attacks.

Conclusion & Summary

- Fault Attack Susceptibility: Latest ciphers such as SIMON and SPECK vulnerable to fault attacks.
- SIMON can be broken using (n/2) faults using a bit-flip fault model and (n/8) faulty ciphertexts using a random byte fault model.

Conclusion & Summary

- Fault Attack Susceptibility: Latest ciphers such as SIMON and SPECK vulnerable to fault attacks.
- SIMON can be broken using (n/2) faults using a bit-flip fault model and (n/8) faulty ciphertexts using a random byte fault model.
- Using a bit-flip fault model, SPECK can be broken using (n/3) bit faults.

Thank You!

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

References

- R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. Available at http://eprint.iacr.org/
- H. A. Alkhzaimi and M. M. Lauridsen. Cryptanalysis of the SIMON Family of Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013. Available at http://eprint.iacr.org/
- F. Abed, E. List, S. Lucks, and J. Wenzel. Differential Cryptanalysis of Reduced-Round Simon. Cryptology ePrint Archive, Report 2013/526, 2013. Available at http://eprint.iacr.org/.
- Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar and Somitra Kumar Sanadhya. Linear Cryptanalysis of Round Reduced SIMON. IACR Cryptology eprint Archive, Report 2013/663, 2013. Available at http://eprint.iacr.org/2013/663

- 3

イロト 不得下 イヨト イヨト

References

D.Boneh, R.A.DeMillo, and R.J.Lipton. On the Importance of Checking Cryptographic Protocols for Faults (ExtendedAbstract). In W. Fumy, editor, Advances in Cryptology - EUROCRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages 37-51. Springer, 1997.