

Differential Fault Intensity Analysis

N. F. Ghalaty, B. Yuce, M. Taha, P. Schaumont

ECE Department Virginia Tech FDTC 2014

This research was supported in part by NSF Grant 1441710

Outline

- 1. DFIA vs DFA?
- 2. Explaining Biased Faults
- 3. An Attack Based on Fault Bias
- 4. Experiments
 - Fault Bias Exists
 - DFIA Demonstration
- 5. Related Work and Conclusions

Differential Fault Analysis (DFA)

Implementations and Actual Faults

Differential Fault Intensity Analysis (DFIA)

$$P_{fault}(Q3) > P_{fault}(Q2) > P_{fault}(Q1) > P_{fault}(Q0)$$

Biased Faults

- Non-uniform propagation time results in non-uniform fault response.
- Varying Fault Intensity [Li 2010] will trigger non-uniform faults. We call this Fault Bias.
- Fault Bias is the basis of DFIA.

Using Biased Faults for Cryptanalysis

Given: C, C' for a given fault bias B (1-bit, 2-bit, ...)

Find: number of keys that result in a solution for

C' = SBOX(S') xor K, C = SBOX(S) xor K

for all S, S' where HD(S, S') <= B

Key uncertainty for single biased fault

Key uncertainty for dual biased fault

Key uncertainty for triple biased fault

Hypothesis Test with Biased Faults

Given: C, C' for a known fault bias B

Find: most likely key byte K

For all
$$\tilde{K}$$
, find $S' = SBOX^{-1}(C' xor \tilde{K})$
Accumulate $\rho_{\tilde{K}} = \Sigma(HD(S', S))$
Select $K = argmin \rho$

Experimental Setup

- FPGA: Altera Cyclone IV (DE2-115)
- Agilent 81110A Pulse/Pattern Generator

Biased Fault Behavior for Sbox

Experimental Setup for AES

DFIA on AES

DFIA Steps on AES

DFIA Steps on AES

DFIA Results on AES

- AES DFIA when injecting a single-byte fault in round 9
 - 4.6 fault injections to retrieve 1 key byte (90 exp)
 - 68 fault injections to retrieve all key bytes (3 exp)
- AES DFIA when injecting multiple singlebyte faults in round 9
 - Fault analysis at 24 clock frequencies between 100MHz and 330 MHz
 - 7 fault injections to retrieve AES key (1 exp)

Related Work

- DFIA is similar to DPA, uses fault bias as a source of side-channel leakage
- Unlike FSA [Li], DFIA does not require data dependency on fault sensitivity. It uses fault bias and associated differential effects.
- Several recent attacks [Fuhr FDTC 13, deSantis LightSec 14] use bias on the faulty state.
 - DFIA does not require bias in the faulty state.
 - DFIA is experimentally demonstrated.

Conclusions

- DFIA requires slightly more faults than some other round-9 fault attacks
- On the other hand, DFIA only uses a loose fault injection requirement, and assumes only the presence of fault bias

- Future efforts:
 - Apply DFIA to other Algorithms
 - Apply DFIA to Software Platforms
 - DFIA Countermeasures