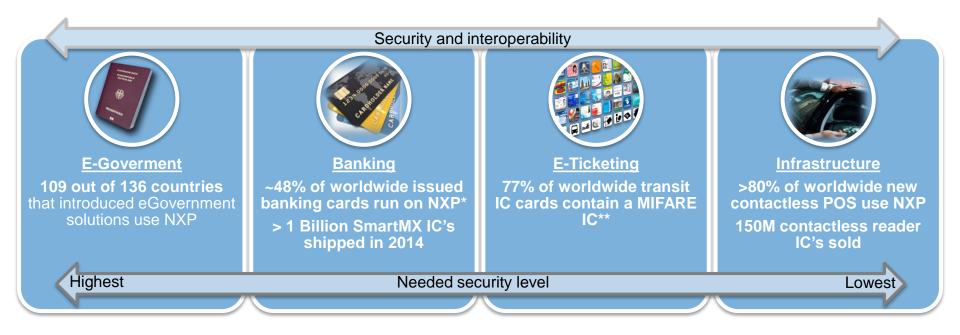
The Need for Intrinsic Hardware Security below 65nm

Mathias Wagner Chief Security Technologist Business Unit Security & Connectivity

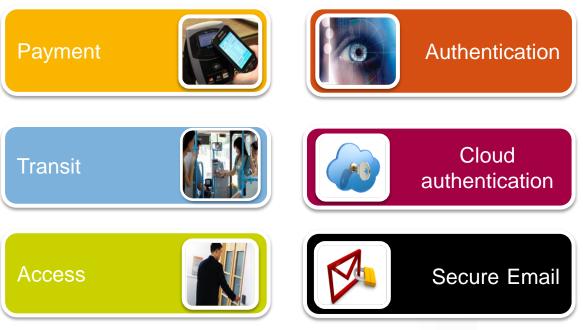
Content

- Introduction & Overview
- Security landscape: What are the business cases of today? What level of security do they need? What technology is available?
- What happens to attack vectors as technology moves to 65nm and below
- Conclusion


Security landscape Where are we today

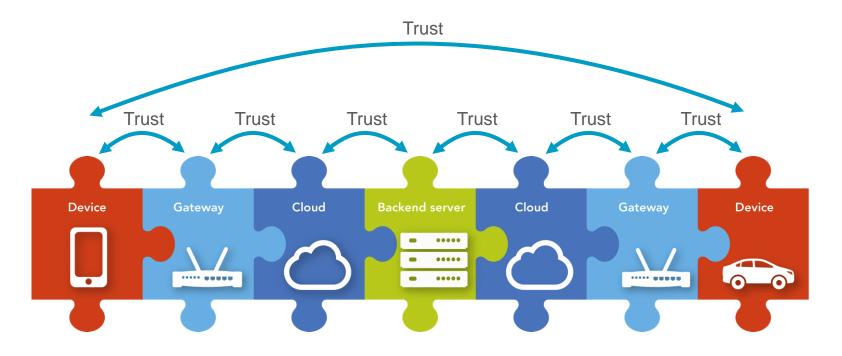
USE CASES

NXP in established security markets

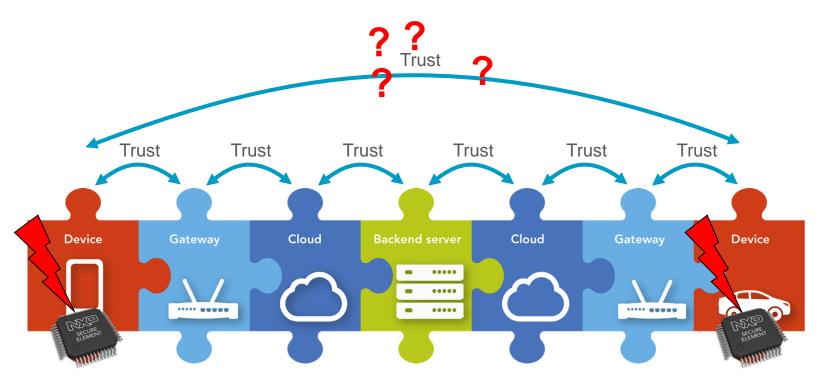

* H1 2014 acc. ABI ** ABI 2014

NP

Embedded secure elements


Wallet

Security



End to end security

The root of trust

NEED FOR HW SECURITY

Why is a secure element needed for security?

Reduce Impact of SW bugs

- Java SW averages ~1 bug every 80 lines of code.
- With intense review ~1 bug in 500 lines of code
- This rate goes up again as code size and thus complexity increases.

Reduce Complexity

• The complexity caused by all devices connected with each other multiplied by their functionality keeps increasing dramatically.

Reduce Attack Surface

• A small, compact design with a few well-defined APIs has a much smaller attack surface to get worried about.

Why is a secure element needed for security?

Provide End-2-End Security

- E-2-E Security is needed to "tunnel" through hostile territory.
- Example: Payment with phone $\leftarrow \rightarrow$ back end

Provide Secure Key Storage

- At the root of any cryptography are secret keys.
- Keeping secret keys secret is the essence of strong crypto.

Certification

• Independent 3rd party verification of security promise!

CERTIFICATION

Security Evaluation

- Levels 1 4
- Not dedicated to smart cards, so it may also describe the physical security of a secure letter box...
- Based on Do's and Don'ts
- Based on Checklists

Common Criteria

Criteria

Common

- In practice levels EAL 3 6+
- Levels 6 & 7 require formal modeling and proofs
- Variant dedicated to smart cards available
- Based on Assets that need to be protected like secret keys, user data, user SW

140-2

S

Common Criteria – Mission Statement

CC Evaluation rates
Correctness
and
Effectiveness
of implemented Security
Functions

Covering the whole development and production process

Involving independent accredited security labs

> Assurance Levels: EAL1 - EAL7

"EAL" Assurance Levels

EAL 7: formally verified designed & tested

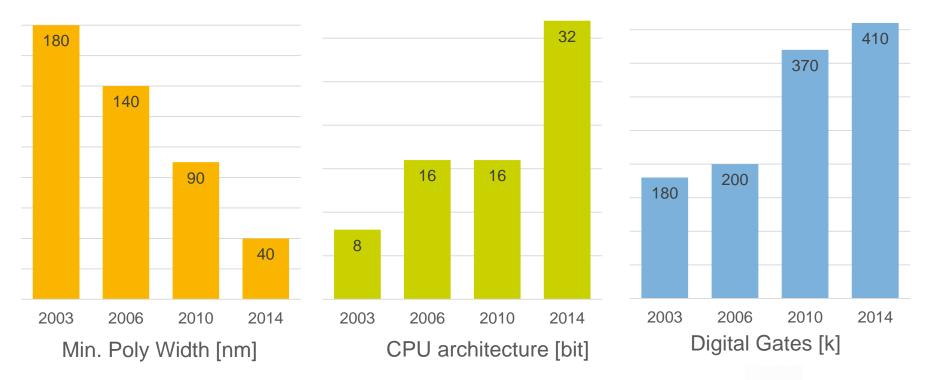
EAL 6: semi-formally verified designed & tested

EAL 5: semi-formally designed & tested

EAL 4: methodically designed, tested & reviewed

EAL 3: methodically tested & checked

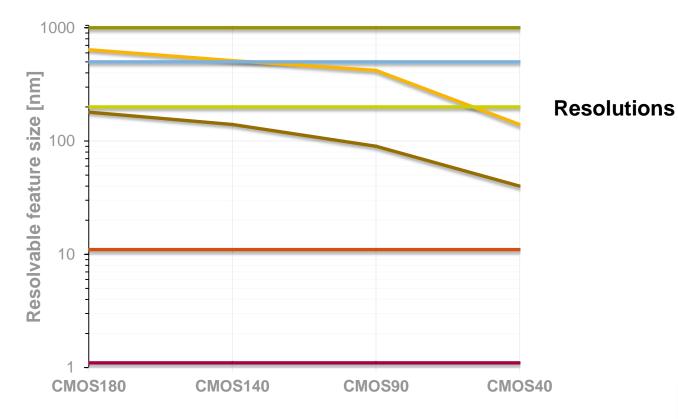
EAL 2: structurally tested


EAL 1: functionally tested

TECHNOLOGY

Technology progress

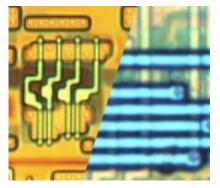
Below 65 nm


Attack vectors

NP

INVASIVE

Invasive attacks complexity



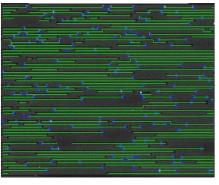

HW Reverse engineering

	Image chip - Polishing - Microscope - Image stitching	Recognize structures - Pattern recognition - Wire tracing	Interpret structures - Gate simulation	Algorithm
--	--	---	---	-----------

Chip image

Wires

Netlist

<port id="0" nam <port id="1" nam

<ports>

netlist <?xml version="1.0" <gate-library> <gate_description= .</pre>

Annotated

From: Olivier Thomas, "Advanced Engineering Techniques: In-Depth Analysis of a Modern Smart Card", Blackhat USA 2015

27. January 10, 2016

Open source tool

 Cooperation
 Reverse engineering integrated circuits with degate – Home

 Image: Specific cooperation
 Reader C Q Cooperation

 Image: Specific cooperation
 Reader C Q Cooperation

Home Status Documentation Screenshots Download Contact

Welcome to the Degate Project Website.

About Degate

Degates' purpose is to aid in <u>VLS1</u>-reverse engineering of <u>diatal logic</u> in integrated circuits (ICs). Degate helps you to explore images from ICs. It matches <u>standard</u> <u>cells</u> on the imagery given by graphical templates and to some degree <u>vias</u> and wires. Degate assits you in tracing circuit paths and in reconstructing the netlist.

Degate is not a completely automatic analyzing tool. Degate helps you with some automation in your manual reverse engineering process.

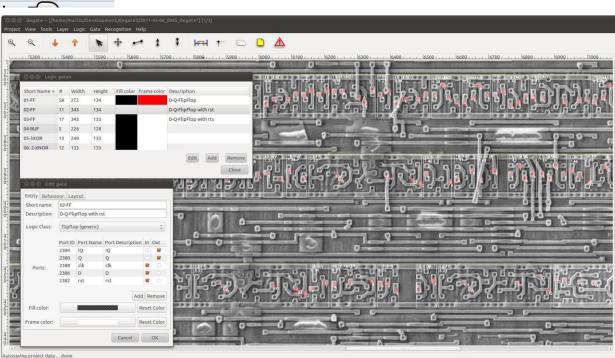
Supported Platforms

Degate is developed under Ubuntu and OS X. The GUI is based on $\underline{\mathsf{gtkmm}}.$ So Degate should run on any unixoid platform, where $\underline{\mathsf{gtkmm}}$ was ported to.

Status

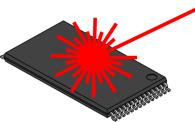
Degate is a spare time project. It is still under development. Some project steps are already implemented other steps are not. Please have a look at the <u>status page</u> to see what is implemented until now. Degate is topic of my diploma thesis, which was <u>published</u> in June 2011.

Author and Licence

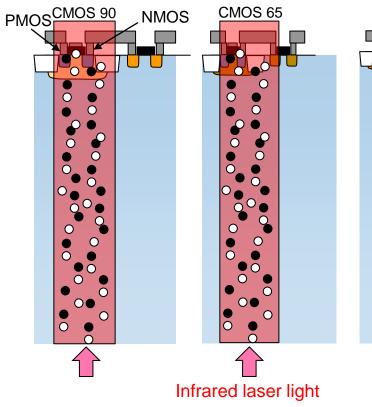

Degate is developed by <u>Martin Schobert</u>. The software is open source. It is released under the <u>GNU</u> <u>General Public Licence Version 3</u>.

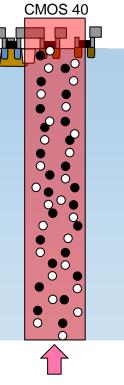
http://www.degate.org/

0



FAULT INJECTION


Laser fault injection

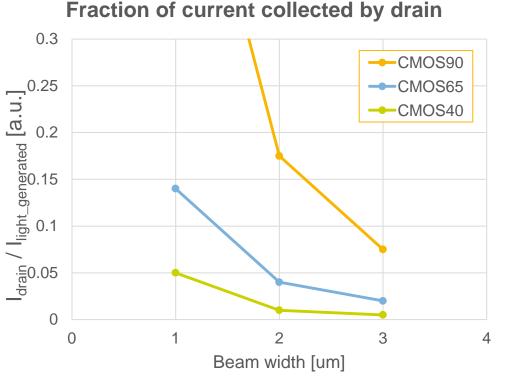

- Question: Do small feature sizes make laser fault injection more difficult?
- Critical aspects for a successful fault injection
 - Enough light to manipulate bits
 - Little enough light to avoid triggering countermeasures
 - Correct timing
 - Repeatability
 - Predictable impact on the IC operation

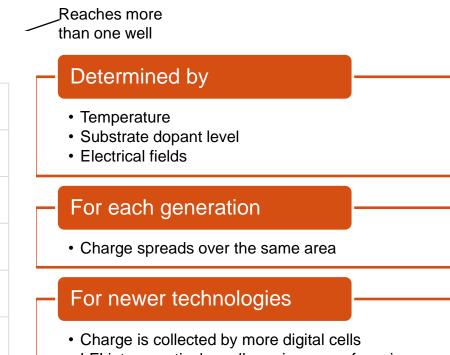
Charge generation by laser light

Determined by

- Wavelength
- Light Intensity
- Illuminated volume

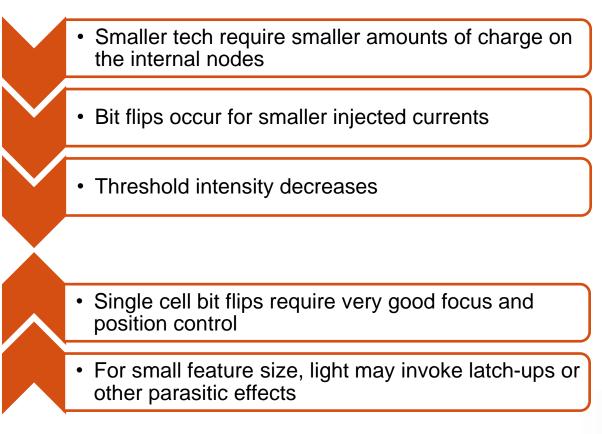
Maintained for


- All technology nodes equally
- Slight differences due to dopant concentrations


For newer technologies

- NIR laser spots always illuminate multiple cells
- Frontside illumination is blocked by metal layers

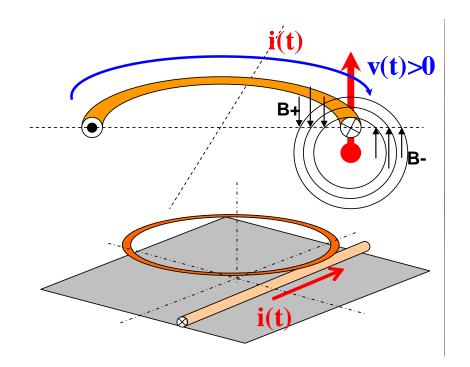
Charge diffusion / drift



LFI into a particular cell requires max. focusing

Impact on bit flips

EM-SIDE-CHANNEL


EM – Side-Channel

• Question: Do small feature sizes affect EM-SCA?

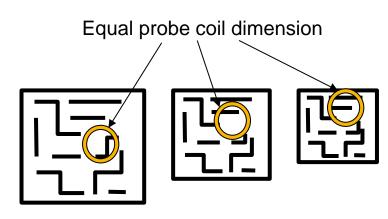
- Critical aspects
 - Raw signal strength through probe
 - Signal-to-noise-ratio through probe
 - Spatial resolution
 - Temporal resolution
 - Analysis stays mostly constant

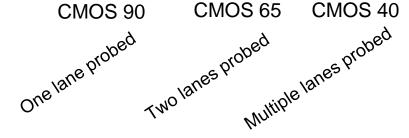
Electromagnetic Emanation

EMA signal created by

- Current through metal line
- Coupled by magnetic field
- To a vertical or horizontal coil

EMA detects


Changes in current through the line


Leaks information on

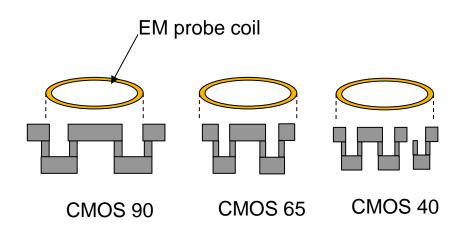
- Internal power consumption
- Loading/unloading of internal capacities

SNR in EM probing

Determined by

- Absolute flux through probe
- Ratio of signal to noise

For each generation


- Core voltage changes but current stays about the same
- Absolute flux per line length constant

For newer technologies

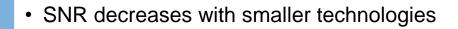
- Smaller structures lead to overlapping and hence decreased SNR
- Higher clock frequency increases SNR via quicker changes in flux

Resolution of EM probing

Determined by

- Probe dimension
- Density of probed lines

Newer technologies


Need smaller probes for the same spatial resolution

Smaller probes lead to

- Lower induction \rightarrow worse SNR
- High complexity of setup

Impact on EM probing

- Resolution decreases with smaller technologies
- Increased cost for smaller EM probes

- Absolute flux per line and per area stays constant
- Higher clocks lead to higher signal through $\Delta \phi / \Delta t$

Stories from behind the metal shield

SAFE ERROR

Safe Error Attack Analysis

- Based on bit flip bias Independent of technology node
- Attacks runs in three phases

Physical Characterization

Determine bit flip bias

- Scan a set of standard registers with an LFI station
- Two Presets: 0x00, 0xFF

Physical Characterization

Preset 0x00

Results over different laser pulse energies and position

Preset 0xFF

Physical Characterization

Determine bit flip bias

- Scan a set of standard registers with an LFI station
- Two Presets: 0x00, 0xFF

- Preferred flip direction for very low energy: $0 \rightarrow 1$
- Not a 100% bias, but enough for a safe-error attack

Effect of masking

Targeted pair could be

- Two mask bits
- Two masked key bits
- One mask, one masked key bit

Possible effects of hitting a pair

• Flip bias $0 \rightarrow 1$

Кеу	Mask	Masked Key	Mask'	Masked Key'	Key'
0	0	0	1	1	0 -> 0
0	1	1	1	1	0 -> 0
1	0		→ 1	1	1 -> 0
1	1	0	1	→ 1	1 -> 0

Excursion – Security Evaluation

Identification Phase:

 Perform the attack once to demonstrate its feasibility and / or achieve a one-time benefit (learning phase)

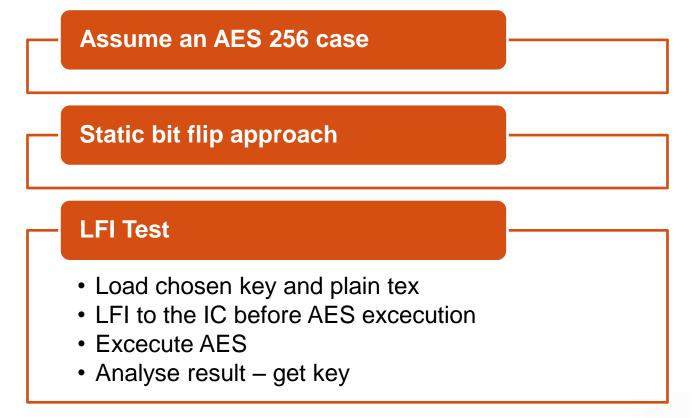
Exploitation Phase:

• Perform the attack **multiple times** for commercial exploitation

Information Flow between these Phases:

• One of the outcomes of the Identification Phase is a **virtual script** that tells the attacker of the Exploitation Phase how to perform the attack

Excursion – CC for Smart Cards


Range of values CC 3.x	TOE resistant to attackers with attack potential of:	
0-15	No rating	
16-20	Basic	
21-24	Enhanced-Basic	
25-30	Moderate	
31 and above	High	

We need to achieve 31 points for VAN.5 (part of EAL 4+, 5, 5+, 6, 6+) for each and every attack path!

"Application of Attack Potential to Smartcards" (developed for JIL by JHAS group)

Factors	Identification	Exploitation
Elapsed time		
< one hour	0	0
< one day	1	3
< one week	2	4
< one month	3	6
> one month	5	8
Not practical	*	*
Expertise		
Layman	0	0
Proficient	2	2
Expert	5	4
Multiple Expert	7	6
Knowledge of the TOE		
Public	0	0
Restricted	2	2
Sensitive	4	3
Critical	6	5
Very critical hardware design	9	NA
Access to TOE		
< 10 samples	0	0
< 100 samples	2	4
> 100 samples	3	6
Not practical	*	*
Equipment		
None	0	0
Standard	1	2
Specialized	3	4
Bespoke	5	6
Multiple Bespoke	7	8
Open samples		
Public	0	NA
Restricted	2	NA
Sensitive	4	NA
Critical	6	NA

Identification scenario

Exploitation scenario

Result from identifcation phase

- Physical location of bits
- Timing information on key loading

Additional conditions

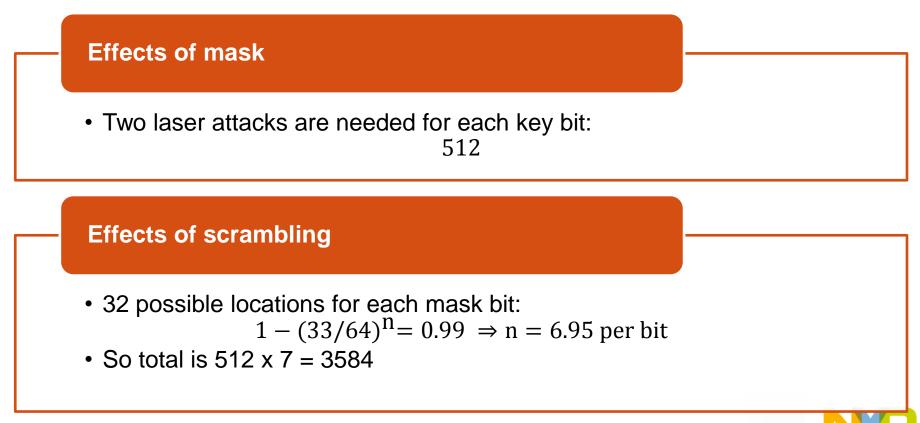
- Known cipher text, known plain text
- Unlimited tries

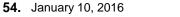
Attack

- Pair of masked key and mask
- Between key loading and AES operation
- Either per spatial or temporal double shot
- Analyse result get key

Identification phase

Identification of physical location of key bits


- Problem 1: Key bits are masked
- Problem 2: Mask bits are stored scrambled
- Problem 3: Any reset is creating a new mask and scrambling pattern


Assumptions

- Mask has on average a Hamming Weight of 0.5
- Mask bits are scrambled byte-wise and independently

Identification phase

Excursion – CC for Smart Cards

Range of values CC 3.x	TOE resistant to attackers with attack potential of:	
0-15	No rating	
16-20	Basic	
21-24	Enhanced-Basic	
25-30	Moderate	
31 and above	High	

We need to achieve 31 points for VAN.5 (part of EAL 4+, 5, 5+, 6, 6+) for each and every attack path!

"Application of Attack Potential to Smartcards" (developed for JIL by JHAS group)

Factors	Identification	Exploitation
Elapsed time		
< one hour	0	U
< one day		3
< one week	2	4
< one month	3	6
> one month	5	8
Not practical	*	*
Expertise		
Layman	0	0
Proficient		2
Expert	5	4
Multiple Expert	7	6
Knowledge of the TOE		
Public	0	U
Restricted	2	2
Sensitive	4	3
Critical	6	5
Very critical hardware design	9	NA
Access to TOE		
< 10 samples	0	0
< 100 samples	2	1
> 100 samples	3	6
Not practical	*	*
Equipment		
None	0	0
Standard	1	2
Specialized	3	4
Bespoke		e l
Multiple Bespoke	7	8
Open samples		
Public	0	NA
Restricted	2	NA
Sensitive	4	NA
Critical	6	NA
	14 +	13 = 27

Conclusion

NP

Security Summary

- The question is, whether HW security offers sufficient advantages over SW security in an Online World, where a system view is required → We like to believe it does...
- Security will improve as technology shrinks, but not per see dramatically
- Security Analysts are here to stay...

SECURE CONNECTIONS FOR A SMARTER WORLD