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Motivation

Fault injection into integrated circuits
 Clock glitches
 Voltage alterations
 EM
 Light (UV, flash lamps, laser)

Parameters for successful fault injection
 Timing (clock cycle and time within clock cycle)
 Length
 Physical intensity

Additional parameters for laser fault injection
 Focus (/spot size) (z)
 Location (x/y)
 Doubled for two-spot systems

 Large search space, exhaustive search might be infeasible
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Reducing Search Space (1)

Carpi et al.: “Glitch It If You Can: Parameter Search Strategies for Successful Fault Injection”, CARDIS13

Picek et al.: “Evolving genetic algorithms for fault injection attacks”, MIPRO14

Picek et al.: “Fault Injection with a new Flavor: Memetic Algorithms make a difference”, COSADE15 (*)

Idea: Use machine learning for finding parameters

Hardly applicable to all parameters (timing, laser location)

(*) Image Source
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Reducing Search Space (2)

Franck Courbon et al.: “Increasing the efficiency of laser fault injections using fast gate 
level reverse engineering”, HOST14

Idea:
1. Grind/polish down to doped area

2. Capture SEM images, identify flip-flops, find all other instances by correlation

3. Use locations for laser fault injection

Requires access to SEM, profiling sample gets destroyed
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Importance of Flip-Flops

Fault has to be stored by a register, otherwise no effect

By directly targeting flip-flops

 Every possible single bit fault

 However, no multi bit faults

Combinatorial Logic
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Optical Beam Induced Current 
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Our Proposal

Optical Beam Induced Current (OBIC) as imaging technique
 High resolution
 Identify locations (x,y,z) 
 Find flip-flops
 Reduces number of Points of Interest drastically

Advantages:
 Independent of other parameters (e.g., power, delay, length)
 Chip is not powered  no countermeasures can be active
 Minimal equipment overhead
 Possible with “every” laser setup

Disadvantage:
 Resolution not as powerful as SEM etc.
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OBIC in Literature

 Well-know in (production-) fault analysis

 Security context:

(a)

Unknown chip, backside!

(b)

Motorola µC, SRAM, frontside

(c)

Microchip µC, 0.9µm, SRAM, frontside

(d)

NEC µC, 0.35µm, backside Actel FPGA, 0.13µm, backside

Image Sources:
(a) van Woudenberg et al., Practical optical fault 

injection on secure microcontrollers, FDTC11
(b) Skorobogatov, Semi-invasive attacks - A new 

approach to hardware security analysis, 2005
(c) Skorobogatov, Optically  enhanced position-

locked power analysis, CHES06
(d) Skorobogatov, Flash memory ’bumping’ attacks, 

CHES 2010
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Setup

Measurement

Fault Injection

Self-build setup
 Lumics laser diode at 1064nm, SMF
 Leica NIR objective (NA 0.75, 100x)
 Newport XPS with motorized stages
 FEMTO transimpedance amplifier connected to 

VDD/GND
 Stanford Research low noise amplifier

Modified commercially available LFI setup

 Alphanov PDM 975nm 2W diode, SMF

 Mitutoyo Plan Apo NIR HR (NA 0.65, 50x)

 Märzhäuser and PI stages

Image Source: alphanov.com
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Case Study: ATXMega16A4U

ATXMega16A4U, 250nm

– Hardware Encryption

• DES (“Round”-Instruction)

• AES (Start/End-Flags)

– Backside thinned to approx. 20µm
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Case Study: ATXMega16A4U

(1) Rough estimation by EM analysis (optional)

 Self-made probe with amplifier

 Trigger during encryption  clearly visible peaks
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Case Study: ATXMega16A4U

(2) OBIC Measurement around found area (z)

 Find focal plane resulting in 
maximum current

  Optimal z-Position for OBIC 
and LFI

 Enables to account for tilted 
DUT with very high precision
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Case Study: ATXMega16A4U

(2) OBIC Measurement around found area (x/y)
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Case Study: ATXMega16A4U

(3) Correlation-Based Pattern Recognition

??

Pearson correlation
0.6 up to ~0.8

Four times for each 
orientation

In a matter of 
seconds
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Case Study: ATXMega16A4U

(3) Correlation-Based Pattern Recognition

Colors consistent
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Case Study: ATXMega16A4U
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Case Study: ATXMega16A4U

(5) Laser Fault Injection
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Case Study: ATXMega16A4U

(5) Laser Fault Injection - Detail

Calculated backwards based on known key
Green: Bit Set
Red: Bit Reset

(a) Complementary fault pattern consistent
 Storage part?

(b) Changing third sensitivity zone
 Clock input?
 Reset?

Pattern identical when clock halted during LFI
 Confirms flip-flop identification

(a)

(a)

(b)

(b)



1913.09.2015, Fault Diagnosis and Tolerance in Cryptography, FDTC 2015, Saint Malo, France.

Case Study: ATXMega16A4U

(6) Differential Fault Analysis
Straight-forward approach worked quite well:

1. Fault between MixColumns (9th round) and SubBytes
(10th round)  single byte faults at output

2. Test for which key hypothesis the difference between 
faulty ciphertext and genuine ciphertext byte resolves 
to single bit fault before SBox

 approx. two pairs ciphertext/faultytext per byte
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Discussion (1)

Time Improvement

 Required time linearly depends on positions to test

 At 1µm steps for given area and 34 found flip-flops:

 255 * 150 = 38250 points exhaustive search

 34 * 17 * 10 = 5780 only flip-flop area

 Targeting only sensitive areas: 3 * 34 = 102
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Discussion (2)

Applicability

Influencing parameters
 Technology node (ATXMega16A4U: 250nm)

 Characteristic cell layout (ATXMega16A4U: 17µm*10µm area)

 Effective spot size (our setup: approx. 710nm calculated spatial resolution)

 ATXMega16A4U: plenty of structural detail for given resolution

Smaller technology nodes:
 Averaging, fine-adjusting laser energy, 2-photon absorption, solid 

immersion lenses

 Potentially hard to manually identify flip-flops

 Autocorrelation?

 Future work..
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Conclusion

 Used OBIC measurement as profiling to find flip-flops

 Device shut off (no reactive countermeasures)

 Independent of correct timing, pulse length (, energy)

 Reduced search space by factor of 6.6 or 375

 Successfully attacked ATXMega16A4U AES core

Countermeasures:

 Isolated power supply (probe bulk directly?)



Thanks!

Questions?


