

To exploit fault injection on non-injective Sboxes

Guillaume BETHOUART

NICOLAS DEBANDE

- Overview of fault attacks
- Principle of our attack

2 Application to the Data Encryption Standard

- Data Encryption Standard
- Attack Simulation
- Countermeasures

3 Conclusion

- Overview of fault attacks
- Principle of our attack

2 Application to the Data Encryption Standard

- Data Encryption Standard
- Attack Simulation
- Countermeasures

3 Conclusion

- Safe Error Attacks
 - + Just need to know if the calculus has been disturbed or not
- Differential Fault Attacks
 - + Work with masked implementations
- Collision Fault Attacks
 - + Do not need to encrypt the same plaintext

Take the best of each

- Safe Error Attacks
 - + Just need to know if the calculus has been disturbed or not
- Differential Fault Attacks
 - + Work with masked implementations
- Collision Fault Attacks

+ Do not need to encrypt the same plaintext

Take the best of each

- Overview of fault attacks
- Principle of our attack

2 Application to the Data Encryption Standard

- Data Encryption Standard
- Attack Simulation
- Countermeasures

3 Conclusion

Principle of our attack

• A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2 :

3/20

Non injectivity

- there exist two different inputs a_1, a_2 such as $S(a_1) = S(a_2)$
- there are an input *a* and a differential δ such as S(a ⊕ δ) = S(a)

N-Differentia

For a given δ , if there exists *a* such as $S(a \oplus \delta) = S(a), \delta$ is called a **N-differential**

Principle of our attack

• A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2 :

3/20

Non injectivity

- there exist two different inputs a_1, a_2 such as $S(a_1) = S(a_2)$
- there are an input *a* and a differential δ such as S(a ⊕ δ) = S(a)

N-Differentia

For a given δ , if there exists *a* such as $S(a \oplus \delta) = S(a), \delta$ is called a **N-differential**

Principle of our attack

• A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2 :

Non injectivity

- there exist two different inputs a₁, a₂ such as S(a₁) = S(a₂)
- there are an input *a* and a differential δ such as S(a ⊕ δ) = S(a)

N-Differentia

For a given δ , if there exists *a* such as $S(a \oplus \delta) = S(a), \delta$ is called a **N-differential**

Principle of our attack

• A non-injective Sbox from \mathbb{F}_2^3 to \mathbb{F}_2^2 :

Non injectivity

- there exist two different inputs a_1, a_2 such as $S(a_1) = S(a_2)$
- there are an input *a* and a differential δ such as S(a ⊕ δ) = S(a)

N-Differential

For a given δ , if there exists *a* such as $S(a \oplus \delta) = S(a), \delta$ is called a **N-differential**

Principle of our attack

Truth table

4/20

а	S(a)
0	1
1	0
2	2
3	3
4	3
5	1
6	2
7	0

Example

If the calculus is not disturbed by the fault δ , we know : $S(a \oplus \delta) = S(a)$ For a known fault $\delta = 4$

Principle of our attack

Truth table

4/20

а	S(a)
0	1
1	0
2	2
3	3
4	3
5	1
6	2
7	0

Example

If the calculus is not disturbed by the fault $\delta,$ we know :

$$S(a \oplus \delta) = S(a)$$

For a **known** fault $\delta = 4$

 $S(0 \oplus \delta) = S(4) \neq S(0)$ $S(1 \oplus \delta) = S(5) \neq S(1)$ $S(2 \oplus \delta) = S(6) = S(2)$ $S(3 \oplus \delta) = S(7) \neq S(3)$

Principle of our attack

Truth table

4/20

Example

If the calculus is not disturbed by the fault $\delta,$ we know :

$$S(a \oplus \delta) = S(a)$$

For a **known** fault $\delta = 4$

 $S(0 \oplus \delta) = S(4) \neq S(0)$ $S(1 \oplus \delta) = S(5) \neq S(1)$

 $S(2\oplus\delta)=S(6)=S(2)$

 $S(3 \oplus \delta) = S(7) \neq S(3)$

Principle of our attack

Truth table

4/20

Example

If the calculus is not disturbed by the fault $\delta,$ we know :

$$S(a \oplus \delta) = S(a)$$

For a **known** fault $\delta = 4$

 $S(0 \oplus \delta) = S(4) \neq S(0)$ $S(1 \oplus \delta) = S(5) \neq S(1)$

 $S(3 \oplus \delta) = S(7) \neq S(3)$

Principle of our attack

Truth table

4/20

Example

If the calculus is not disturbed by the fault $\delta,$ we know :

$$S(a \oplus \delta) = S(a)$$

For a known fault $\delta=4$

$$S(0 \oplus \delta) = S(4) \neq S(0)$$
$$S(1 \oplus \delta) = S(5) \neq S(1)$$
$$S(2 \oplus \delta) = S(6) = S(2)$$
$$S(3 \oplus \delta) = S(7) \neq S(3)$$

Principle of our attack

Truth table

4/20

Example

If the calculus is not disturbed by the fault $\delta,$ we know :

$$S(a \oplus \delta) = S(a)$$

For a **known** fault $\delta = 4$

$$S(0 \oplus \delta) = S(4) \neq S(0)$$
$$S(1 \oplus \delta) = S(5) \neq S(1)$$
$$S(2 \oplus \delta) = S(6) = S(2)$$
$$S(3 \oplus \delta) = S(7) \neq S(3)$$

Result

For a known fault $\delta = 4$ If	
	$S(a \oplus \delta) = S(a)$
We deduce :	
	a=2 or $a=6$

To deduce information about the input we only need to know :

- $\bullet~$ The fault value $\delta~$
- If the calculus is disturbed or not

Application to the Data Encryption Standard

Outline

Introduction

6/20

- Overview of fault attacks
- Principle of our attack

2 Application to the Data Encryption Standard

- Data Encryption Standard
- Attack Simulation
- Countermeasures

3 Conclusion

• DES follows a Feistel scheme :

- 64-bit block cipher using a 56-bit key k
- 16 times the same round transformation **f**

• DES follows a Feistel scheme :

- 64-bit block cipher using a 56-bit key k
- 16 times the same round transformation **f**

• DES follows a Feistel scheme :

- 64-bit block cipher using a 56-bit key k
- 16 times the same round transformation **f**

- Expansion function
- 48-bit round key kr
- 8 different non-injective Sboxes
- Permutation

• Expansion function

- 48-bit round key k_r
- 8 different non-injective Sboxes
- Permutation

- Expansion function
- 48-bit round key k_r
- 8 different non-injective Sboxes
- Permutation

- Expansion function
- 48-bit round key k_r
- 8 different non-injective Sboxes

Permutation

- Expansion function
- 48-bit round key k_r
- 8 different non-injective Sboxes
- Permutation

- First or last round
- After the data propagation
- Before Sboxes
- Fault affects only one Sbox

- First or last round
- After the data propagation
- Before Sboxes
- Fault affects only one Sbox

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES : $a = x \oplus k$, x the Expansion output and k the key If we know :

- The fault δ
- The Expansion output x
- If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES : $a = x \oplus k$, x the Expansion output and k the key If we know :

- The fault δ
- The Expansion output x

• If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES : $a = x \oplus k$, x the Expansion output and k the key If we know :

- The fault δ
- The Expansion output x
- If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES : $a = x \oplus k$, x the Expansion output and k the key If we know :

- The fault δ
- The Expansion output x
- If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant

If we know $S(a \oplus \delta) = S(a)$ we deduce information on a

During the DES : $a = x \oplus k$, x the Expansion output and k the key If we know :

- The fault δ
- The Expansion output x
- If $S(x \oplus k \oplus \delta) = S(x \oplus k)$ or not

We deduce information on k

- Fault injection does not have a 100% success rate (missed faults)
- The fault value is rarely constant

Characterization :

- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

```
Attack :If the fault has no effect..For each (\delta , p)...................................................................................................<td
```


Characterization :

- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

Characterization :

- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

Attack :

If the fault has no effect

. For each
$$(\delta, p)$$

. . For each
$$k \in \llbracket 0, 63 \rrbracket$$

. If
$$S(x \oplus k \oplus \delta) = S(x \oplus k)$$

Characterization :

- Fault injection with known key
- We estimate a fault occurrence probability p for each fault value

Attack stage

Attack :

If the fault has no effect

. For each
$$(\delta, p)$$

. . For each
$$k \in \llbracket 0, 63 \rrbracket$$

. If
$$S(x \oplus k \oplus \delta) = S(x \oplus k)$$

$$\ldots \ldots \ldots counter[k] + = p$$

Get information when fault has an effect

If the fault has an effect

. For each (δ, p)

- . For each $k \in [0, 63]$
- . . If $S(x \oplus k \oplus \delta) = S(x \oplus k)$

Get information when fault has an effect	
If the fault has an effect	
. For each (δ, p)	
. For each $k \in \llbracket 0, 63 \rrbracket$	
If $S(x \oplus k \oplus \delta) = S(x \oplus k)$	
$\ldots \ldots \ldots \ldots \ldots counter[k] - = p$	

Combined algorithm

FDTC 15'

To exploit fault injection on non-injective Sboxes

FDTC 15'

To exploit fault injection on non-injective Sboxes

To exploit fault injection on non-injective Sboxes

- Overview of fault attacks
- Principle of our attack

2 Application to the Data Encryption Standard

- Data Encryption Standard
- Attack Simulation
- Countermeasures

3 Conclusion

- Random plaintexts and random keys
- Theoretical fault distribution
- Mean of 1000 simulations

Fault Distribution

 $HW(\delta) = 0 \quad \rightarrow p = 0$ $HW(\delta) = 1 \quad \rightarrow p = 0$ $HW(\delta) = 2 \quad \rightarrow p = 0.013$ $HW(\delta) = 3 \quad \rightarrow p = 0.02$ $HW(\delta) = 4 \quad \rightarrow p = 0.027$ $HW(\delta) = 5 \quad \rightarrow p = 0$ $HW(\delta) = 6 \quad \rightarrow p = 0$

Rank of the key when fault number increases

FDTC 15'

To exploit fault injection on non-injective Sboxes

September 13, 2015

FDTC 15'

To exploit fault injection on non-injective Sboxes

- Overview of fault attacks
- Principle of our attack

2 Application to the Data Encryption Standard

- Data Encryption Standard
- Attack Simulation
- Countermeasures

3 Conclusion

To exploit fault injection on non-injective Sboxes

- The attacker cannot know if a fault has an effect or not
- Our attack is no longer possible

Our attack is no longer possible

• Our attack is no longer possible

- Overview of fault attacks
- Principle of our attack

2 Application to the Data Encryption Standard

- Data Encryption Standard
- Attack Simulation
- Countermeasures

s 🖉	ERMA TECHNOLOGIES				Concl	usion
	19/20	Comp	arison			•
		Safe Error	DFA	CFA	Our Attack	
	Works with masked im- plementation	×	1	1	1	
	Does not need to en-					

Does not need to en- crypt the same plaintext	\checkmark	Х	\checkmark	\checkmark
Does not need to know the calculus output	\checkmark	X	X	1
Fault number \simeq	100	10	100	10000

				Conc	lusion
19/20	Comp	arison			•
	Safe Error	DFA	CFA	Our Attack	
Works with masked im-	X	1	1	1	

plementation		✓	✓	✓
Does not need to en- crypt the same plaintext	~	×	~	1
Does not need to know the calculus output	\checkmark	X	X	1
Fault number \simeq	100	10	100	10000

				Conc	lusion
19/20	Comp	arison			•
	Safe Error	DFA	CFA	Our Attack	
Works with masked im- plementation	×	1	1	1	
Does not need to en-	1	X	1	1	

crypt the same plaintext	✓	^	✓	✓
Does not need to know the calculus output	1	×	×	1
Fault number \simeq	100	10	100	10000

				Conc	lusion			
Comparison								
	Safe Error	DFA	CFA	Our Attack				
Works with masked im- plementation	×	1	~	 Image: A start of the start of				
Does not need to en- crypt the same plaintext	1	×	1	1				

erypt the sume plumtext				
Does not need to know the calculus output	✓	×	×	1
Fault number \simeq	100	10	100	10000

Any Questions?

FDTC 15'

To exploit fault injection on non-injective Sboxes

Any Questions?

FDTC 15'

To exploit fault injection on non-injective Sboxes