Singular curve point decompression attack

Peter Günther

joint work with

Johannes Blömer

University of Paderborn

FDTC 2015, September 13th, Saint Malo

Elliptic curves

Example:
$$E(\mathbb{R}) : y^2 = x^3 - 3x + 3$$

Elliptic curve $E(\mathbb{K})$

Points $(x, y) \in \mathbb{K}^2$ that fulfill

$$y^2 = x^3 + a_4x + a_6$$

with $a_4, a_6 \in \mathbb{K}$ and discriminant

$$\Delta:=-16(4a_4^3+27a_6^2)\neq 0.$$

Elliptic curves as additive group

Example: $E(\mathbb{R}) : y^2 = x^3 - 3x + 3$

Group operation independent from a₆:

$$\lambda = \frac{y_P - y_T}{x_P - x_T}$$

$$x_{P+T} = \lambda^2 - x_P - x_T$$

$$y_{P+T} = \lambda(x_P - x_{P+T}) - y_P$$

Elliptic curves as additive group

Example: $E(\mathbb{R}) : y^2 = x^3 - 3x + 3$

Group operation independent from a_6 :

$$\lambda = \frac{3x_T + a_4}{2y_T}$$

$$x_{2T} = \lambda^2 - 2x_T$$

$$y_{2T} = \lambda(x_T - x_{2T}) - y_T$$

$$sP := P + P + \cdots + P$$
 (s times)

$$sP := P + P + \cdots + P$$
 (s times)

- Discrete logarithm (DLOG): given P, Q = sP, compute s
- Assumption: complexity of DLOG problem exponential on elliptic curve \Rightarrow high security already for small \mathbb{F}_q (e.g. 256 bit)

$$sP := P + P + \cdots + P$$
 (s times)

- Discrete logarithm (DLOG): given P, Q = sP, compute s
- Assumption: complexity of DLOG problem exponential on elliptic curve \Rightarrow high security already for small \mathbb{F}_q (e.g. 256 bit)
- Important cryptographic primitive (ECDH, ECDSA, ...)

$$sP := P + P + \cdots + P$$
 (s times)

- Discrete logarithm (DLOG): given P, Q = sP, compute s
- Assumption: complexity of DLOG problem exponential on elliptic curve \Rightarrow high security already for small \mathbb{F}_q (e.g. 256 bit)
- Important cryptographic primitive (ECDH, ECDSA, ...)
- Adversarial environment: Physical protection of s required

Invalid point attack on scalar multiplication

$$E: y^2 = x^3 + a_4x + a_6$$

Outline of invalid point attacks

- Group law does not require a_6
- 2 Move P to weak curve with same a4
- 3 Obtain Q = sP for secret s on weak curve
- Compute DLOG of Q to base P on weak curve
- Infer DLOG s on original curve

Examples weak curve attacks

- P on curve with smooth order
- P in small subgroup
- P on singular curve

$$E(\mathbb{R}): y^2 = x^3 - 3x + 3$$

$$E(\mathbb{R}): y^2 = x^3 - 3x + 2, \ \Delta = 0$$

$$E(\mathbb{R}): y^2 = x^3 - 3x + 3$$

$$E(\mathbb{R}): y^2 = x^3 - 3x + 2, \ \Delta = 0$$

$$E(\mathbb{R}): y^2 = x^3 - 3x + 3$$

$$E(\mathbb{R}): y^2 = x^3 - 3x + 2, \ \Delta = 0$$

$$E(\mathbb{R}): y^2 = x^3 - 3x + 3$$

$$E(\mathbb{R}): y^2 = x^3 - 3x + 2, \ \Delta = 0$$

Singular curves with cusp $(a_4 = 0)$

$$E(\mathbb{R}): y^2 = x^3 + 1$$

$$E(\mathbb{R}): y^2=x^3, \ \Delta=0$$

Singular curves with cusp $(a_4 = 0)$

$$E(\mathbb{R}): y^2 = x^3 + 1$$

$$E(\mathbb{R}): y^2=x^3, \ \Delta=0$$

$$E_{NS}(\mathbb{F}_q)\simeq \mathbb{F}_q^+$$

- ⇒ DLOG problem trivial (by division)
 - Map DLOG instance to \mathbb{F}_q^+
- 2 Solve DLOG in \mathbb{F}_q^+

Singular curve attack on scalar multiplication

- For fixed a4, there are at most 2 corresponding singular curves
- Random faults will not provide points on singular curve
- How do we get a point onto one of them?

Our approach: Point decompression

Compression

Compress :
$$E(\mathbb{F}_q) o \mathbb{F}_q imes \{0,1\}$$

 $(x,y) \mapsto (x,b)$ where $b = \mathsf{LSB}(y)$

- Reduces bandwidth by 50%
- Defined in many standards like IEEE 1363, SEC 1, X9.62
- Decompression prior to scalar multiplication

Point compression

Decompress

Require:
$$E: y^2 = x^3 + a_4x + a_6, (x, b) \in \mathbb{F}_q \times \{0, 1\}$$

Ensure: (x, y) with $y^2 = x^3 + a_4x + a_6$

1:
$$v \leftarrow x^3 + a_4x$$

$$\triangleright v = x^3 + a_4 x$$

2:
$$v \leftarrow v + a_6$$

$$\triangleright v = x^3 + a_4 x + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_q$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

$$\triangleright v = (-1)^b \sqrt{x^3 + a_4 x + a_6}$$

5: **return**
$$(x, y)$$

- 6: else
- 7: return \mathcal{O}
- 8: end if

Point compression

Decompress

Require: E

Ensure: (x,

2: $v \leftarrow v +$

3: if $\sqrt{v} \in$

• Similar implementations in IEEE 1363, SEC 1, X9.62, OpenSSL

1: $v \leftarrow x^3$ • Implicit (partial) point validation:

Decompress $(x, b) \in E(\mathbb{F}_q)$

$$\triangleright v = (-1)^b \sqrt{x^3 + a_6}$$

4: $v \leftarrow (-1)^b \sqrt{v}$ 5: return (x, y)

6: else

return \mathcal{O}

8: end if

 $+ a_6$

Decompress

Require:
$$E: y^2 = x^3 + a_4x + a_6, (x, b) \in \mathbb{F}_q \times \{0, 1\}$$

Ensure: (x, y) with $y^2 = x^3 + a_4x + a_6$

1:
$$v \leftarrow x^3 + a_4x$$

$$\triangleright v = x^3 + a_4x$$

2:
$$v \leftarrow v + a_6$$

$$\triangleright v = x^3 + a_4 x + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_q$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

$$\triangleright v = (-1)^b \sqrt{x^3 + a_4 x + a_6}$$

5: return
$$(x, y)$$

- 6: else
- 7: return \mathcal{O}
- 8: end if

Decompress with $a_4 = 0$

Require:
$$E: y^2 = x^3 + a_4x + a_6$$
, $(x, b) \in \mathbb{F}_q \times \{0, 1\}$

Ensure: (x, y) with $y^2 = x^3 + a_6$

1:
$$v \leftarrow x^3$$

$$\triangleright v = x^3$$

2:
$$v \leftarrow v + a_6$$

$$\triangleright v = x^3 + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_q$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

$$\triangleright v = (-1)^b \sqrt{x^3} + a_6$$

5: return
$$(x, y)$$

7: return
$$\mathcal{O}$$

Decompress with $a_4 = 0$ and with fault

Require:
$$E: y^2 = x^3 + a_4x + a_6, (x, b) \in \mathbb{F}_q \times \{0, 1\}$$

Ensure: (x, y) with $y^2 = x^3$

1:
$$v \leftarrow x^3$$

2:
$$v \leftarrow v + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_q$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

5: return
$$(x, y)$$

7: return \mathcal{O}

8: end if

$$\triangleright v = (-1)^b \sqrt{x^3} + a$$

Decompress with $a_4 = 0$ and with fault

Require:
$$E: y^2 = x^3 + a_4x + a_6, (x, b) \in \mathbb{F}_q \times \{0, 1\}$$

Ensure: (x, y) with $y^2 = x^3$

1:
$$v \leftarrow x^3$$

2:
$$v \leftarrow v + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_q$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

5: **return**
$$(x, y)$$

6: else

7: return \mathcal{O}

8: end if

x quadratic residue ⇒ output on singular curve

$$y^2 = x^3$$

$$b\sqrt{x^3}$$
 $+a_6$

Hash string to curve

Decompress: building block of other algorithms

```
MapToPoint : \{0,1\}^* \to E(\mathbb{F}_q)
Require: E: y^2 = x^3 + a_4x + a_6, H: \{0,1\}^* \to \mathbb{F}_q \times \{0,1\}, M \in \{0,1\}^*,
```

- 1: $i \leftarrow 0$
- 2: repeat
- \triangleright until (x, b) is valid compression
- 3: $(x,b) \leftarrow H(M \parallel i)$
- 4: $P \leftarrow \text{Decompress}(x, b)$
- 5: $i \leftarrow i + 1$

Ensure: $P \in E(\mathbb{F}_a)$

- 6: until $P \neq \mathcal{O}$
- 7: return P

Hash string to curve

Decompress: building block of other algorithms

```
\mathsf{MapToPoint}: \{0,1\}^* \to \mathsf{E}(\mathbb{F}_q)
```

Require: $E: y^2 = x^3 + a_4x + a_6$, $H: \{0,1\}^* \to \mathbb{F}_q \times \{0,1\}$, $M \in \{0,1\}^*$, Ensure: $P \in E(\mathbb{F}_q)$

- 1: $i \leftarrow 0$
- 2: repeat
- 3: $(x,b) \leftarrow H(M \parallel i)$
- 4: $P \leftarrow \mathsf{Decompress}(x, b)$
- 5: $i \leftarrow i + 1$
- 6: **until** $P \neq \mathcal{O}$
- 7: return P

Atttack:

Choose M such that $H(M \parallel 0) = (x, b)$ with quadratic residue x.

pression

Properties of the attack

Features of the attack

- Efficient, especially in the case $a_4 = 0$
- One shot: can be applied to exponentiation with nonce
- Applications:
 - Point decompression (encryption schemes)
 - Hashing to curve (special signature schemes)
 - Random point sampling (countermeasures)

Limitations of the attack

- Access to Q = sP required
- For $a_4 \neq 0$: stronger control over (x, b) required
 - Attack on plain Decompress still possible
 - Attack on MapToPoint not possible

Example application: BLS short signatures

Definition (BLS Signatures)

- $\mathbb{G}_1, \mathbb{G}_2 \subseteq E(\mathbb{F}_q)$: cyclic groups of order r with generators P_1 and P_2
- $\mathbb{G}_T \subseteq \mathbb{F}_q^*$ cyclic group of order r
- ullet pairing $e:\mathbb{G}_1 imes\mathbb{G}_2 o\mathbb{G}_T$
- MapToPoint : $\{0,1\}^* \to E(\mathbb{F}_q)$
- KeyGen(·):
 - Select s uniformly at random from [0, r-1]
 - 2 Output secret key s and public key $P_s = sP_2$
- **Sign**(*M*, *s*):
 - **1** compute $P = \mathsf{MapToPoint}(M) \in \mathbb{G}_1$
 - 2 compute and output $\sigma = sP$ as signature for M under s
- Verify (M, σ, P_s) : output 1 if and only if

$$e(\sigma, P_2) = e(MapToPoint(M), P_s).$$

Example application: BLS short signatures

Definition (BLS Signatures)

- $\mathbb{G}_1, \mathbb{G}_2 \subseteq E(\mathbb{F}_q)$: cyclic groups of order r with generators P_1 and P_2
- $\mathbb{G}_T \subseteq \mathbb{F}_q^*$ cyclic group of order r
- ullet pairing $e:\mathbb{G}_1 imes\mathbb{G}_2 o\mathbb{G}_T$
- MapToPoint : $\{0,1\}^* \to E(\mathbb{F}_q)$
- KeyGen(·):
 - **1** Select s uniformly at random from [0, r-1]
 - ② Output secret key s and public key $P_s = sP_2$
- **Sign**(*M*, *s*):
 - **1** compute $P = \mathsf{MapToPoint}(M) \in \mathbb{G}_1$
 - 2 compute and output $\sigma = sP$ as signature for M under s
- Verify (M, σ, P_s) : output 1 if and only if

$$e(\sigma, P_2) = e(MapToPoint(M), P_s).$$

Example application: BLS short signatures

Definition (BLS Signatures)

- $\mathbb{G}_1, \mathbb{G}_2 \subseteq E(\mathbb{F}_q)$; cyclic groups of order r with generators P_1 and P_2
- ullet $\mathbb{G}_{\mathcal{T}}\subseteq \mathbb{F}_{q}^{*}$ cyc Very efficient with Barreto-Naehrig (BN) • pairing e : \mathbb{G}_1 curves:

$$E: y^2 = x^3 + a_6$$

MapToPoint

Note: $a_4 = 0$

- KeyGen(·):
 - **1** Select s uniformly at random from [0, r-1]
 - 2 Output secret key s and public key $P_s = sP_2$
- Sign(M,s):
 - ① compute $P = \mathsf{MapToPoint}(M) \in \mathbb{G}_1$
 - 2 compute and output $\sigma = sP$ as signature for M under s
- Verify (M, σ, P_s) : output 1 if and only if

$$e(\sigma, P_2) = e(MapToPoint(M), P_s).$$

Attack: Proof of concept realization

Target: BLS short signatures of Relic toolkit on AVR

- Atmel 11111
- Target hardware: Atmel AVR Xmega A1
- Target software: Relic toolkit
 - Open source
 - Prime and binary field arithmetic
 - NIST and pairing-friendly curves including BN curves
 - Bilinear maps and related extension fields
 - Cryptographic protocols including BLS short signatures
- Attack: Second order instruction skip attack
 - First fault: decompress to singular curve
 - Second fault: remove point validation countermeasure

Attack: Proof of concept realization

Target: BLS short signatures of Relic toolkit on AVR

- Target hardware: Atmel AVR Xmega A1
- Target software: Relic toolkit
 - Open source
 - Prime and binary field arithmetic
 - NIST and pairing-friendly curves including BN curves
 - Bilinear maps and related extension fields
 - Cryptographic protocols including BLS short signatures
- Attack: Second order instruction skip attack
 - First fault: decompress to singular curve
 - Second fault: remove point validation countermeasure

Instruction skips via clock glitching

Instruction skips via clock glitching

The RELIC implementation

First fault: move to singular curve

Decompress:

Require:
$$E: y^2 = x^3 + a_4x + a_6$$
, $(x, b) \in \mathbb{F}_a \times \{0, 1\}$

Ensure: (x, y) with $y^2 = x^3 + a_4x + a_6$

1:
$$v \leftarrow x^3 + a_4 x$$

2:
$$v \leftarrow v + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_a$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

5: **return**
$$(x, y)$$

- 6: else
- 7: return \mathcal{O}
- 8: end if

The RELIC implementation

First fault: move to singular curve

BN-curve: $E: y^2 = x^3 + 17$, note: $a_4 = 0$

Decompress:

Require:
$$E: y^2 = x^3 + a_4x + a_6$$
,

$$(x,b) \in \mathbb{F}_q \times \{0,1\}$$

Ensure:
$$(x, y)$$
 with $y^2 = x^3$

1:
$$v \leftarrow x^3$$

2:
$$v \leftarrow v + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_q$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

5: **return**
$$(x, y)$$

6: **else**

7: return \mathcal{O}

8: end if

- J.mp

 $+a_6$

avr-gcc

The RELIC implementation

First fault: move to singular curve

BN-curve: $E: y^2 = x^3 + 17$, note: $a_4 = 0$

Require:
$$E: y^2 = x^3 + a_4x + a_6$$
,

$$(x,b) \in \mathbb{F}_q \times \{0,1\}$$

Ensure: (x, y) with $y^2 = x^3$

1:
$$v \leftarrow x^3$$

2:
$$v \leftarrow v + a_6$$

3: if
$$\sqrt{v} \in \mathbb{F}_q$$
 then

4:
$$v \leftarrow (-1)^b \sqrt{v}$$

5: return
$$(x, y)$$

- 6: **else**
- 7: **return** \mathcal{O}
- 8: end if

avr-gcc

References

- Relic toolkit: https://github.com/relic-toolkit
- Glitcher Die Datenkrake:
 https://www.usenix.org/conference/woot13/workshop-program/presentation/nedospasov